Фрактальное подобие что это такое
Созерцание великого фрактального подобия
(с) «Галактика галактик»
Фракталы — не просто красивое природное явление. Согласно проведенным исследованиям, рассматривание фрактальных структур на 60 % повышает стрессоустойчивость, измеряемую на основе физиологических показателей. При созерцании фракталов в лобной коре головного мозга всего за одну минуту увеличивается активность альфа-волн — как во время медитации или при ощущении легкой сонливости.
Неудивительно, что фрактальный биодизайн оказывает на человека умиротворяющее воздействие. Нам нравится смотреть на облака, на языки пламени в камине, на листву в парке… Как это работает? Ученые предполагают, что естественный ход поисковых движений наших глаз — фрактальный. При совпадении размерности траектории движения глаз и фрактального объекта мы впадаем в состояние физиологического резонанса, за счет чего активизируется деятельность определенных участков мозга.
Но не все фракталы одинаково полезны. В данной статье расскажем о фрактальной размерности и о её влиянии на здоровье.
Биофракталы
(с)
Примеры фракталов в природе встречаются повсеместно: от ракушек до сосновых шишек. Каждый фрактал имеет математическую размерность D. Для человека наиболее полезны фракталы с размерностью 1,3—1,5, и большинство фрактальных объектов, созданных природой, имеют именно такую размерность. А глаз человека эстетически «настроен» на восприятие как раз таких, встречающихся в природе фракталов.
Прекрасным примером фракталов в природе являются деревья. Фракталы можно обнаружить на каждом уровне лесной экосистемы — от семян и сосновых шишек до ветвей и листьев. На иллюстрации выше запечатлена «застенчивая крона» — явление, когда кроны деревьев не соприкасаются, формируя локальные участки лесного полога.
С биологической точки зрения такое расположение крон объясняется естественным отбором — листья расположены как можно дальше друг от друга, чтобы максимизировать доступ к ресурсам, особенно к солнечному свету для фотосинтеза.
Итальянская капуста романеско имеет сверхэффективную конструкцию, позволяющую максимизировать воздействие солнечного света и транспортировать питательные вещества по всей клеточной структуре растения.
Однако размерность этой капусты — 2,66. Вообще, дробная размерность является ключевой особенностью фракталов. При этом большинство из них находится в плоскости между линией (размерность 1) и двухмерной поверхностью (размерность 2). Чем выше показатель, тем больше движение в сторону трехмерных объектов (размерность 3).
Компьютерные игры
Трехмерные фракталы — одни из самых редких в природе. Гораздо проще встретить их в виртуальной реальности. Например, в игре Marble Marcher — уникальной аркаде, где нужно прокатить шар к цели в пространстве, созданном единым всеобъемлющим алгоритмом. Практически все, что вы увидите в игре, создано не дизайнерами, а чистой математикой.
Yedoma Globula — это 3D-песочница на самописном движке, в которой можно исследовать процедурно создаваемые фрактальные ландшафты.
Фрактальные формулы можно использовать в компьютерной графике для создания реалистичных гор, рек, лесов и облаков. Игра Everything пошла гораздо дальше: в ней помимо визуальной составляющей в системообразующей части геймплея использовано фрактальное подобие. Тут фактически нет NPC-персонажей. Вы можете начать игру в образе свиньи, которая бродит по зеленым склонам и встречает дуб, а затем стать дубом, который отправится в самостоятельное путешествие.
Гаджеты
Использовать фракталы как «что-то полезное» можно не только в компьютерных играх или для релаксации. Именно фракталы подсказали способ уменьшения размера антенн для сотовых телефонов. Фрактальная геометрия расширяет способность создавать новые, более практичные устройства.
Сейчас фракталы используются в новом поколении спутниковой связи, в устройствах IoT и других проектах приема, передачи и преобразования радиоволн.
Архитектура
Фракталы можно использовать даже неосознанно. На фото выше изображен фрагмент купола иранской мечети. А здесь вы найдете множество фотографий потолков школ, культурных и религиозных сооружений в Иране, которые демонстрируют невероятно сложные фрактальные рельефы и мозаики, декорирующие изысканные архитектурные элементы.
Храм Деви Джагадамби в Кхаджурахо — отличный пример фрактальной архитектуры. Индийские и многие другие храмы Юго-Восточной Азии имеют фрактальную структуру: главная башня окружена башнями меньшего размера, те в свою очередь — еще более маленькими башнями. И так до восьми (а порой и больше) уровней, представляющих различные аспекты индуистского мифологического пантеона.
Фракталы в архитектуре — не уникальное изобретение одной части света. Сложное убранство готической, ренессансной и барочной архитектуры, особенно выраженное в соборах, часто демонстрирует фрактальное копирование и масштабирование на нескольких уровнях. Характерное для европейской архитектуры с конца XII в. переплетение арок скорее имело не эстетическое, а практическое значение: оно было разработано для укрепления окон и стен против давления ветра.
С конца XX века фрактальную геометрию использовали осознанно для создания интересных и приятных глазу фасадов. На фото — здание одного из самых сложных в архитектурном плане комплексов, расположенное в мельбурнском городском районе (Австралия). В комплексе объединены культурные, рекреационные и коммерческие проекты.
Опасные фракталы
Большинство фрактальных изображений, генерируемых математическими, естественными и человеческими процессами, обладают общим эстетическим качеством, основанным на визуальной сложности. Участники тестов визуального восприятия предпочитают фракталы именно естественного происхождения с размерностью 1,3—1,5. Для примера: волны и облака имеют размерность 1,3, береговая линия — 1,05.
А что, если увеличить размерность? Получившийся объект не всегда будет приятно разглядывать. На иллюстрации выше изображена картина распределения электрического разряда с размерностью 1,75, известная как фигура Лихтенберга, созданная высоковольтным электрическим разрядом на непроводящем материале.
Еще один отталкивающий объект — фрактальный продукт кристаллических структур с размерностью 1,8, сфотографированный через микроскоп.
Демосцена & софт
Пожалуй, нигде так красочно не исследовали мир фракталов, как в демосцене. Hartverdrahtet — достойный победитель конкурса демосцены 2012 года по 4-килобайтным файлам. Автор, Demoscene Passivist, говорит, что для создания демо с процедурно генерируемыми фрактальными ландшафтами потребовалось около двух месяцев.
А вот один из лучших проектов с фрактальными эффектами в демосцене. К сожалению, качество демонстрационного видео крайне плохое (из-за давности лет), но демо можно скачать и запустить на компьютере.
Для создания подобных или других фрактальных миров особых ухищрений не требуется. Есть несколько отличных программ, с помощью которых вы сможете самостоятельно изучать особенности фрактальной вселенной.
XaoS Open Source Project. Бесплатный, открытый, кроссплатформенный инструмент для масштабирования и изучения множества Мандельброта и десятков других фракталов.
JWildfire. Еще одна кроссплатформенная (в том числе с мобильной версией) программа, основанная на Java с открытым исходным кодом, для обработки изображений. Она известна в основном своим сложным генератором пламенных фракталов.
Mandelbulber | Mandelbulb3D. Превосходные бесплатные инструменты для создания трехмерных фракталов, таких как устрашающая Оболочка Мандельброта, загадочная «коробка» Мандельбокс и др. Mandelbulber несколько более функционален и быстр, но Mandelbulb3D чуть проще в использовании.
По ссылке вы найдете множество других программ.
Что такое фрактальное подобие?
Фрактальное подобие — это повторяемость особого качества, это подобие, проходящее сквозь масштабы, — трансмасштабное подобие.
Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — множество, обладающее свойством самоподобия (объект, в точности или приближённо совпадающий с частью себя самого, то есть целое имеет ту же форму, что и одна или более частей). В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических фигур, ограниченных конечным числом звеньев. Самоподобные фигуры, повторяющиеся конечное число раз, называются предфракталами.
Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке в результате изучения непрерывных недифференцируемых функций (например, функция Больцано, функция Вейерштрасса, множество Кантора). Термин «фрактал» введён Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы». Особую популярность фракталы обрели с развитием компьютерных технологий, позволивших эффектно визуализировать эти структуры.
Слово «фрактал» употребляется не только в качестве математического термина. Фракталом может называться предмет, обладающий, по крайней мере, одним из указанных ниже свойств:
Обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур (таких как окружность, эллипс, график гладкой функции): если рассмотреть небольшой фрагмент регулярной фигуры в очень крупном масштабе, то он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, то есть на всех шкалах можно увидеть одинаково сложную картину.
Является самоподобным или приближённо самоподобным.
Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую.
Многие объекты в природе обладают свойствами фрактала, например: побережья, облака, кроны деревьев, снежинки, кровеносная система, система альвеол человека или животных.
Бесконечность фракталов. Как устроен мир вокруг нас
Мы уже писали о том, как абстрактная математическая теория хаоса нашла применения в самых разных науках – от физики до экономики и политологии. Сейчас мы приведем еще один подобный пример – теорию фракталов. Строгого определения понятия «фрактал» нет даже в математике. Что-то там такое они, конечно, говорят. Но «простому человеку» этого не понять. Как вам, например, такая фраза: «Фрактал – это множество, обладающее дробной хаусдорфовой размерностью, которая больше топологической». Тем не менее, они, фракталы, окружают нас и помогают понять многие явления из разных сфер жизни.
С чего все началось
Фракталами долго никто кроме профессиональных математиков не интересовался. До появления компьютеров и соответствующего софта. Все изменилось в 1982 году, когда в свет вышла книга Бенуа Мандельброта «Фрактальная геометрия природы». Эта книга стала бестселлером, не столько по причине простого и понятного изложения материала (хотя это утверждение весьма относительно – человек, не имеющий профессионального математического образования в ней ничего не поймет), сколько из-за приведенных компьютерных иллюстраций фракталов, которые, действительно, завораживают. Давайте посмотрим на эти картинки. Они, правда, того стоят.
И таких картинок множество. Но какое все это великолепие имеет отношение к нашей реальной жизни и к тому, что окружает нас в природе и повседневном мире? Оказывается, самое прямое.
Но сначала скажем несколько слов о самих фракталах, как геометрических объектах.
Что такое фрактал, если говорить по-простому
Первое. Как они, фракталы, строятся. Это довольно сложная процедура, использующая специальные преобразования на комплексной плоскости (что это такое – знать не надо). Важно только то, что эти преобразования являются повторяющимися (происходят, как говорят в математике, итерациями). Вот в результате этого повторения и возникают фракталы (те, которые вы видели выше).
Второе. Фрактал является самоподобной (точно или приблизительно) структурой. Это значит следующее. Если вы поднесете к любой из представленных картинок микроскоп, увеличивающий изображение, например, в 100 раз, и посмотрите на фрагмент попавшего в окуляр кусочка фрактала, то вы обнаружите, что он идентичен исходному изображению. Если вы возьмете более сильный микроскоп, увеличивающий изображение в 1000 раз, то вы обнаружите, что кусочек попавшего в окуляр фрагмента предыдущего изображения имеет ту же самую или очень похожую структуру.
Из этого следует крайне важный для последующего вывод. Фрактал имеет крайне сложную структуру, которая повторяется на разных масштабах. Но чем больше мы забираемся вглубь его устройства, тем сложнее он становится в целом. И количественные оценки свойств первоначальной картинки могут начинать меняться.
Вот теперь мы оставим абстрактную математику и перейдем к окружающим нас вещам – таким, казалось бы, простым и понятным.
Фрактальные объекты в природе
Береговая линия
Представьте себе, что вы с околоземной орбиты фотографируете некий остров, например Британию. Вы получите такое же изображение, как на географической карте. Плавное очертание берегов, со всех сторон – море.
Узнать протяженность береговой линии очень просто. Возьмите обычную нитку и аккуратно выложите ее по границам острова. Потом, измеряйте ее длину в сантиметрах и, полученное число, умножайте на масштаб карты – в одном сантиметре сколько-то там километров. Вот и результат.
А теперь следующий эксперимент. Вы летите на самолете на высоте птичьего полета и фотографируете береговую линию. Получается картина, похожая на фотографии со спутника. Но эта береговая линия оказывается изрезанной. На ваших снимках появляются небольшие бухты, заливы, выступающие в море фрагменты суши. Все это соответствует действительности, но не могло быть увиденным со спутника. Структура береговой линии усложняется.
Допустим, прилетев домой, вы на основании своих снимков сделали подробную карту береговой линии. И решили измерить ее длину с помощью той самой нитки, выложив ее строго по полученным вами новым данным. Новое значение длины береговой линии превысит старое. И существенно. Интуитивно это понятно. Ведь теперь ваша нитка должна огибать берега всех заливов и бухт, а не просто проходить по побережью.
Заметьте. Мы уменьшили масштаб, и все стало намного сложнее и запутаннее. Как у фракталов.
А теперь еще одна итерация. Вы идете по тому же побережью пешком. И фиксируете рельеф береговой линии. Выясняется, что берега заливов и бухт, которые вы снимали с самолета, вовсе не такие гладкие и простые, как вам казалось на ваших снимках. Они имеют сложную структуру. И, таким образом, если вы нанесете на карту вот эту «пешеходную» береговую линию, длина ее вырастет еще больше.
Да, бесконечностей в природе не бывает. Но совершенно понятно, что береговая линия – это типичный фрактал. Она остается себе подобной, но ее структура становится все более и более сложной при ближайшем рассмотрении (вспомните про пример с микроскопом).
Это воистину удивительное явление. Мы привыкли к тому, что любой ограниченный по размерам геометрический объект на плоскости (квадрат, треугольник, окружность) имеет фиксированную и конечную длину своих границ. А здесь все по-другому. Длина береговой линии в пределе оказывается бесконечной.
Дерево
Дерево воспроизводит само себя, на каждом уровне. При этом его структура постоянно усложняется, но остается себе подобной. Это ли не фрактал?
Кровообращение
А вот кровеносная система человека. Она тоже имеет фрактальную структуру. Есть артерии и вены. По одним из них кровь подходит к сердцу (вены), по другим поступает от него (артерии). А далее, кровеносная система начинает напоминать то самое дерево, о котором мы говорили выше. Сосуды, сохраняя свое строение, становятся все более тонкими и разветвленными. Они проникают в самые отдаленные участки нашего тела, доносят кислород и другие жизненно важные компоненты до каждой клетки. Это типичная фрактальная структура, которая воспроизводит саму себя все в более и более мелких масштабах.
Стоки реки
«Из далека долго течет река Волга». На географической карте это такая голубая извилистая линия. Ну, притоки крупные обозначены. Ока, Кама. А если мы уменьшим масштаб? Выяснится, что притоков этих намного больше. Не только у самой Волги, но и у Оки и Камы. А у них есть и свои притоки, только более мелкие. А у тех – свои. Возникает структура, удивительно похожая на кровеносную систему человека. И опять возникает вопрос. Какова протяженность всей этой водной системы? Если измерять протяженность только основного русла – все понятно. В любом учебнике можно прочитать. А если все измерять? Опять в пределе бесконечность получается.
Наша Вселенная
Конечно, в масштабах миллиардов световых лет, она, Вселенная, устроена однородно. Но давайте посмотрим на нее поближе. И тогда мы увидим, что никакой однородности в ней нет. Где-то расположены галактики (звездные скопления), где-то – пустота. Почему? Почему распределение материи подчиняется иррегулярным иерархическим законам. А что происходит внутри галактик (еще одно уменьшение масштаба). Где-то звезд больше, где-то меньше. Где-то существуют планетные системы, как в нашей Солнечной, а где-то – нет.
Не проявляется ли здесь фрактальная сущность мира? Сейчас, конечно, существует огромный разрыв между общей теорией относительности, которая объясняет возникновение нашей Вселенной и ее устройством, и фрактальной математикой. Но кто знает? Возможно, это все когда-то будет приведено к «общему знаменателю», и мы посмотрим на окружающий нас космос совсем другими глазами.
К практическим делам
Подобных примеров можно приводить много. Но давайте вернемся к более прозаическим вещам. Вот, например, экономика. Казалось бы, причем здесь фракталы. Оказывается, очень даже причем. Пример тому – фондовые рынки.
Практика показывает, что экономические процессы носят зачастую хаотичный, непредсказуемый характер. Существовавшие до сегодняшнего дня математические модели, которые пытались эти процессы описывать, не учитывали одного очень важного фактора – способность рынка к самоорганизации.
Вот тут на помощь и приходит теория фракталов, которые имеют свойства «самоорганизации», воспроизводя себя на уровне разных масштабов. Конечно, фрактал является чисто математическим объектом. И в природе, да и в экономике, их не существует. Но есть понятие фрактальных явлений. Они являются фракталами только в статистическом смысле. Тем не менее симбиоз фрактальной математики и статистики позволяет получить достаточно точные и адекватные прогнозы. Особенно эффективным этот подход оказывается при анализе фондовых рынков. И это не «придумки» математиков. Экспертные данные показывают, что многие участники фондовых рынков тратят немалые деньги на оплату специалистов в области фрактальной математики.
Что же дает теория фракталов? Она постулирует общую, глобальную зависимость ценообразования от того, что было в прошлом. Конечно, локально процесс ценообразования случаен. Но случайные скачки и падения цен, которые могут происходить сиюминутно, имеют особенность собираться в кластеры. Которые воспроизводятся на больших масштабах времени. Поэтому, анализируя то, что было когда-то, мы можем прогнозировать, как долго продлиться та или иная тенденция развития рынка (рост или падение).
Таким образом, в глобальном масштабе тот или иной рынок «воспроизводит» сам себя. Допуская случайные флуктуации, вызванные массой внешних факторов, в каждый конкретный момент времени. Но глобальные тенденции сохраняются.
Вот вам и фракталы! Чем мы дальше уменьшаем масштаб, тем структура фрактала становится все более сложной. Но они воспроизводят себя, так же как это делает фондовый рынок.
Заключение
Почему мир устроен по фрактальному принципу? Ответ, возможно, состоит в том, что фракталы, как математическая модель, обладают свойством самоорганизации и самоподобия. При этом каждая их форма (см. приведенные в начале статьи картинки) сколь угодно сложна, но живет своей собственной жизнью, развивая себе подобные формы. Не так ли и наш мир устроен?
А вот общество. Появляется какая-нибудь идея. Сначала довольно абстрактная. А потом «проникает в массы». Да как-то трансформируется. Но в целом сохраняется. И превращается на уровне большинства людей в целеуказание жизненного пути. Вот тот же СССР. Принял очередной съезд КПСС очередные эпохальные решения, и пошло все это вниз. В более и более мелкие масштабы. Горкомы, парткомы. И так до каждого человека. Повторяющаяся структура.
Конечно, теория фракталов не позволяет нам прогнозировать будущие события. А это вряд ли и возможно. Но на многое то, что нас окружает, и что происходит в нашей повседневной жизни, позволяет смотреть совсем другими глазами. Осознанными.
digitall_angell
.: Хроники ментальных путешествий :.
Ментальная разведка и метаконтакт. Новый взгляд на историю, медицину, «других» и возможности Матрицы
Глава 3. Фрактальность физической реальности
Одним из самых важных принципов в Мироздании является фрактальность, в которой Мироздание повторяет свои процессы на различных уровнях, используя специфические модели и шаблоны. Возьмем, например, открытую систему Земля. У неё, как и человека, тоже есть кровь – вода, есть легкие – деревья, и есть вены –реки. Роль её печени играют камни и песок, через который фильтруются макро загрязнения, и круговорот воды в природе, который отделяет молекулы воды от микро мусора. Сама же Земля является носителем огромного количества маленьких открытых систем, называемых нами растениями, животными, насекомыми, рыбами и человеками, которые постоянно взаимодействуют между собой.
Сами человеки также организованы в системы – семьи, роды, нации, которые управляются сверх-системами (эгрегорами по религиозным, политическим, экономическим и т.д. принципам), и образуют дальнейшие иерархические уровни нашей цивилизации, на каждом из которых есть свои правила и механизмы взаимодействия.
Земное сознание является экспериментальным, также как и наши тела, души и многие виды животных. Большинство этих животных было занесено на землю различными архитекторами, а населяющие их души пришли с абсолютно разных концов гиперпространственных горизонтов для получения богатого земного опыта. Таких экспериментальных платформ как Земля существует не мало, но каждая из них уникальна, на каждой формируется свой особенный тип сознания.
Роль человека на земле, как и во многих других реальностях, заключается в том, чтобы развивать свой потенциал, расширяться, понижать энтропию, усложняя свой Кубик Рубика реальности. Этим заняты практически все системы, обладающими потенциалом развития – от амеб до метавселенных. Все фрактально и все подобно.
На примере алгоритмов фракталы выглядят так:
Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — математическое множество, обладающее свойством самоподобия, то есть однородности в различных шкалах измерения (любая часть фрактала подобна всему множеству целиком). В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических фигур, ограниченных конечным числом звеньев. (Wiki)
Замечу, что это не просто рисунок, а алгоритм, в который можно беЗконечно углубляться или отдаляться своим вниманием, выведенный на визуальный интерфейс. Иными словами это картинка, кодированная особым образом, позволяющим ей расти или уменьшаться беЗконечно
Мно́жество Мандельбро́та — это множество точек на комплексной плоскости, для которых итерационная последовательность при
является сходящейся. То есть, это множество таких c, для которых существует такое действительное R, что неравенство |zn| Множество Мандельброта является одним из самых известных фракталов, в том числе за пределами математики, благодаря своим цветным визуализациям. Его фрагменты не строго подобны исходному множеству, но при многократном увеличении определённые части всё больше похожи друг на друга.
А вот, что дает немного более продвинутая версия фракталов, если подключить 3Д аниматор. Опять же, все, что вы видите, является результатом работы алгоритма, а не просто картинкой:
Не совсем понятен принцип?
Для более четкого понимания фрактальности в физическом мире взглянем на давний пост:
Недавно поднимался вопрос по физическим характеристикам уплотнения эфира в материю (спину), а также о вибрационном влиянии звука на материю. Сегодня рассмотрим другие интересные эффекты фрактальности Мироздания (само-подобности на разных уровнях)
Допустим, вся структура материального мира поддерживается одной единственной несущей волной. Что будет, если немного поменять характеристики этой волны? А вот что:
А если каждый материал поддерживается своей собственной несущей волной?
Тогда вот это:
Возможно ли, что именно таким образом солнечные системы и галактики удерживаются вместе, а не разлетаются слишком быстро?
Более чем!
А если вспомнить, что и сами атомы обладают спином (кручением), то можно частично понять почему и они не разлетаются (в совокупности со стоячими волнами).
4. данный пример уже приводился, но все-таки стоит его привести еще раз:
5. Также не забываем про феррофлюиды. Магнитные волны выстаивают четкие равномерные паттерны из частиц металла, растворенных в воде или масле:
Ничего не напоминает? А так:
Кстати, такой эксперимент можно поставить дома с использованием магнита и обычных чернил для принтера:
А какие фрактальные подобия в Творении знаете вы? )