ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΉ способ задания двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ

Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅

Π’Ρ‹Π²ΠΎΠ΄Ρ‹ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… Π½ΠΈΠΆΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ» ΠΈ ΠΈΠ·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ приводится Π½Π° страницС β€œΠšΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ точки”. Π—Π΄Π΅ΡΡŒ ΠΌΡ‹ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌ основныС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ этой Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΊ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΌΡƒ способу задания двиТСния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π”Π°Π»Π΅Π΅ ΠΌΡ‹ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ вычислСния кинСматичСских Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ для ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠ³ΠΎ способа задания двиТСния.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ кинСматичСских Π²Π΅Π»ΠΈΡ‡ΠΈΠ½

Радиус ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ:
.
Π¦Π΅Π½Ρ‚Ρ€ ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ:
.

Π•Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ Π±ΠΈΠ½ΠΎΡ€ΠΌΠ°Π»ΠΈ:
.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ скорости ΠΈ ускорСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΠΎ Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌ уравнСниям Π΅Π΅ двиТСния

По Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ Π²ΠΈΠ΄ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ΠΈ для ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ, Π΅Π΅ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ, ΠΏΠΎΠ»Π½ΠΎΠ΅, ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ ускорСния, Π° Ρ‚Π°ΠΊΠΆΠ΅ радиус ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ.

УравнСния двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ:
, см;
, см.

РСшСниС

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π° Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ
, Ρ‚ΠΎ
; ΠΈΠ»ΠΈ
.
Аналогичным ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠ΅ для ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ :
;
;

Π‘Ρ‚Ρ€ΠΎΠΈΠΌ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρƒ ΠΏΠΎ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ.

06
± 35,625
± 64,5
± 92,625
± 120

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ скорости Ρ‚ΠΎΡ‡ΠΊΠΈ

ВычисляСм значСния ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ скорости Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ :
;
.
ΠœΠΎΠ΄ΡƒΠ»ΡŒ скорости:
.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ускорСния Ρ‚ΠΎΡ‡ΠΊΠΈ

ВычисляСм значСния ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ ускорСния Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ :
;
.
ΠœΠΎΠ΄ΡƒΠ»ΡŒ ускорСния:
.

ΠΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ ускорСниС:
.
Π’Π΅ΠΊΡ‚ΠΎΡ€ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Π² сторону Ρ†Π΅Π½Ρ‚Ρ€Π° ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ.

Радиус ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ:
.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹.

Π•Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ:
.
Π’Π΅ΠΊΡ‚ΠΎΡ€ Ρ‚Π°Π½Π³Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ускорСния:

.
Π’Π΅ΠΊΡ‚ΠΎΡ€ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ускорСния:

.
Π•Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ Π³Π»Π°Π²Π½ΠΎΠΉ Π½ΠΎΡ€ΠΌΠ°Π»ΠΈ:
.
ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ†Π΅Π½Ρ‚Ρ€Π° ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ:

.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π’ΠžΠŸΠ ΠžΠ‘Π« И ΠžΠ’Π’Π•Π’Π« ПО ΠšΠ˜ΠΠ•ΠœΠΠ’Π˜ΠšΠ•

КакиС кинСматичСскиС способы задания двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΈ Π² Ρ‡Ρ‘ΠΌ состоит ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΈΠ· этих способов?

Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚: СстСствСнный, Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΉ ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΉ способы задания двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π°). ЕстСствСнный способ задания двиТСния примСняСтся Π² случаС, ΠΊΠΎΠ³Π΄Π° траСктория Ρ‚ΠΎΡ‡ΠΊΠΈ Π·Π°Ρ€Π°Π½Π΅Π΅ извСстна (прямая ΠΈΠ»ΠΈ кривая линия). ПолоТСниС двиТущСйся Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ опрСдСляСтся Π΄ΡƒΠ³ΠΎΠ²ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ΠΎΠΉ, отсчитываСмой ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° отсчёта:

Π²). ΠŸΡ€ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΌ способС задания двиТСния ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠžΡ…, OΡƒ, Oz опрСдСляСтся трСмя ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ.

Π§Π΅ΠΌ являСтся траСктория Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΡ€ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΌ способС задания двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ?

Как ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Ρ‘ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ?

Для получСния уравнСния Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡŒ ΠΈΠ· ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ двиТСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ t (врСмя).

Если Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² плоскости Π·Π°Π΄Π°Π½ΠΎ уравнСниями:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

x = f 1 ( t ), y = f 2 ( t ).

Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π΅Π½ Π²Π΅ΠΊΡ‚ΠΎΡ€ скорости Ρ‚ΠΎΡ‡ΠΊΠΈ Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ ΠΈ ΠΊΠ°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΠ½ ΠΈΠΌΠ΅Π΅Ρ‚?

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ v – это вСкторная Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π°Ρ быстроту ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ систСмС отсчёта. Π’Π΅ΠΊΡ‚ΠΎΡ€ скорости Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡ‚ радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:

Π’Π΅ΠΊΡ‚ΠΎΡ€ скорости Ρ‚ΠΎΡ‡ΠΊΠΈ v Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ ΠΏΠΎ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ Π² сторону двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ.

Как связан ΠΎΡ€Ρ‚ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊ ΠΊΡ€ΠΈΠ²ΠΎΠΉ с радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ двиТущСйся Ρ‚ΠΎΡ‡ΠΊΠΈ?

Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π½Π° проСкция скорости Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΊ Π΅Ρ‘ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ΠΈ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π΅Ρ‘ скорости?

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ‚ Π΄ΡƒΠ³ΠΎΠ²ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ d s d t прСдставляСт собой ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости v Π½Π° ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΊ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Как ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹Π΅ оси Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚?

Как опрСдСляСтся Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости ΠΏΡ€ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΌ способС задания двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ?

Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π΅Π½ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈ ΠΊΠ°ΠΊ ΠΎΠ½ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Π³ΠΎΠ΄ΠΎΠ³Ρ€Π°Ρ„Ρƒ скорости?

УскорСниС a β€” это вСкторная Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π°Ρ быстроту измСнСния модуля ΠΈ направлСния скорости Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π’Π΅ΠΊΡ‚ΠΎΡ€ ускорСния Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ€Π°Π²Π΅Π½ ΠΏΠ΅Ρ€Π²ΠΎΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡ‚ скорости ΠΈΠ»ΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡ‚ радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Как Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ СстСствСнныС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ оси Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΊΡ€ΠΈΠ²ΠΎΠΉ?

ЕстСствСнными ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΌΠΈ осями Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Ρ‚Ρ€ΠΈ Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныС оси: ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ, направлСнная Π² сторону возрастания Π΄ΡƒΠ³ΠΎΠ²ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹, главная Π½ΠΎΡ€ΠΌΠ°Π»ΡŒ, направлСнная Π² сторону вогнутости ΠΊΡ€ΠΈΠ²ΠΎΠΉ ΠΈ Π±ΠΈΠ½ΠΎΡ€ΠΌΠ°Π»ΡŒ, направлСнная пСрпСндикулярно плоскости ΠΏΡ€ΠΎΠ²Π΅Π΄Ρ‘Π½Π½ΠΎΠΉ Ρ‡Π΅Ρ€Π΅Π· ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΈ Π³Π»Π°Π²Π½ΡƒΡŽ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒ.

ΠšΠ°ΠΊΠΎΠ²Ρ‹ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹ Ο‡ ΠΊΡ€ΠΈΠ²ΠΎΠΉ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅?

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Π’Π΅ΠΊΡ‚ΠΎΡ€ ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹ ΠΊΡ€ΠΈΠ²ΠΎΠΉ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡ‚ ΠΎΡ€Ρ‚Π° ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊ ΠΊΡ€ΠΈΠ²ΠΎΠΉ ΠΏΠΎ Π΄ΡƒΠ³ΠΎΠ²ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π΅:

Π’Π΅ΠΊΡ‚ΠΎΡ€ ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹ Ο‡ располоТСн Π² ΡΠΎΠΏΡ€ΠΈΠΊΠ°ΡΠ°ΡŽΡ‰Π΅ΠΉΡΡ плоскости ΠΈ Π½Π°ΠΏΡ€Π°Π²-

Π»Π΅Π½ ΠΏΠΎ Π³Π»Π°Π²Π½ΠΎΠΉ Π½ΠΎΡ€ΠΌΠ°Π»ΠΈ ΠΊ Ρ†Π΅Π½Ρ‚Ρ€Ρƒ ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹ ΠΊΡ€ΠΈΠ²ΠΎΠΉ:

Π³Π΄Π΅ ρ β€” радиус ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹ ΠΊΡ€ΠΈΠ²ΠΎΠΉ.

Π’ ΠΊΠ°ΠΊΠΎΠΉ плоскости располоТСно ускорСниС Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈ Ρ‡Π΅ΠΌΡƒ Ρ€Π°Π²Π½Ρ‹ Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π½Π° СстСствСнныС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ оси?

Π’Π΅ΠΊΡ‚ΠΎΡ€ ускорСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π° Π»Π΅ΠΆΠΈΡ‚ Π² ΡΠΎΠΏΡ€ΠΈΠΊΠ°ΡΠ°ΡŽΡ‰Π΅ΠΉΡΡ плоскости ΠΈ Ρ€Π°Π²Π΅Π½ гСомСтричСской суммС Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ ΠΏΠΎ Π³Π»Π°Π²Π½ΠΎΠΉ Π½ΠΎΡ€ΠΌΠ°Π»ΠΈ, называСтся Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ ускорСниСм, Π° Π΄Ρ€ΡƒΠ³ΠΎΠΉ, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ ΠΏΠΎ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ, называСтся ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ускорСниСм.

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ ускорСния Π½Π° Π³Π»Π°Π²Π½ΡƒΡŽ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒ Ρ€Π°Π²Π½Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρƒ модуля скорости Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° радиус ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹.

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ ускорСния Π½Π° ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Ρ€Π°Π²Π½Π° ΠΏΠ΅Ρ€Π²ΠΎΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡ‚ алгСбраичСской Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ скорости ΠΈΠ»ΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡ‚ Π΄ΡƒΠ³ΠΎΠ²ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ, скорости ΠΈ ускорСния Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΏΡ€ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π΅Ρ‘ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Если Ρ‚ΠΎΡ‡ΠΊΠ° двиТСтся ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Ρ‚ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. УравнСния, Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ зависимости ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ двиТущСйся Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ уравнСниями двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² пространствС задаСтся трСмя уравнСниями:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ(3.1)

Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² плоскости (рис. 17) задаСтся двумя уравнСниями:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ(3.2)

БистСмы ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ (1) ΠΈΠ»ΠΈ (2) Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π·Π°ΠΊΠΎΠ½ΠΎΠΌ двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅.

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

НиТС рассматриваСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² плоскости, поэтому ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ систСма (2).

Если Π·Π°ΠΊΠΎΠ½ двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π·Π°Π΄Π°Π½ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅, Ρ‚ΠΎ

A). траСктория плоского двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ выраТаСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ,

ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ образуСтся ΠΈΠ· Π΄Π°Π½Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ двиТСния послС ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ;

B). числовоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ скорости Ρ‚ΠΎΡ‡ΠΊΠΈ находится ΠΈΠ· Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

послС ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ опрСдСлСния ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ (см. рис. 17) скорости Π½Π° оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽΠΈ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

C). числовоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ускорСния находится ΠΈΠ· Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

послС ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ опрСдСлСния ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ ускорСния Π½Π° оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽΠΈ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ;

НаправлСния скорости ΠΈ ускорСния ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ осСй ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ ΠΈΠ· тригономСтричСских ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ скорости ΠΈΠ»ΠΈ ускорСния ΠΈ ΠΈΡ… проСкциями.

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ уравнСния двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ радиус ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ двиТущСйся Ρ‚ΠΎΡ‡ΠΊΠΈ Π±Π΅Π· нСпосрСдствСнного исслСдования уравнСния Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ. Π­Ρ‚ΠΎΡ‚ способ основан Π½Π° Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ радиус ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ двиТущСйся Ρ‚ΠΎΡ‡ΠΊΠΈ Π²Ρ…ΠΎΠ΄ΠΈΡ‚ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‰ΡƒΡŽ числовоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ускорСния.

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. (Π°)

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽΡ‚ΠΎΡ‡ΠΊΠΈ опрСдСляСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. (Π±)

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. (б’)

ЧисловоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ускорСния ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽΠ²Ρ…ΠΎΠ΄ΠΈΡ‚ Π² Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ускорСния Ρ‚ΠΎΡ‡ΠΊΠΈ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ,

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ, (Π²)

Π³Π΄Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ускорСния

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ(Π³)

ΠΈ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ускорСниС

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. (Π΄)

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ВСорСтичСская ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠ°

16. ΠšΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° Ρ‚ΠΎΡ‡ΠΊΠΈ. Бпособы задания двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ (Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΉ ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΉ)

ΠšΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° ΠΈΠ·ΡƒΡ‡Π°Π΅Ρ‚ ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ двиТСния – мСханичСскоС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° – это Π·Π½Π°Ρ‡ΠΈΡ‚ ΡƒΠΊΠ°Π·Π°Ρ‚ΡŒ Π΅Π³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠΉ систСмы отсчСта Π² ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ (Π² дальнСйшСм Π±ΡƒΠ΄Π΅ΠΌ Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ΡŒ просто Ρ‚ΠΎΡ‡ΠΊΠΈ) Π·Π°Π΄Π°Π½ΠΎ, Ссли извСстСн Π·Π°ΠΊΠΎΠ½ двиТСния.

Π—Π°ΠΊΠΎΠ½ двиТСния. Π—Π°ΠΊΠΎΠ½ двиТСния – это ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π΅Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠΉ систСмы отсчСта Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Основная Π·Π°Π΄Π°Ρ‡Π° ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ. По извСстному Π·Π°ΠΊΠΎΠ½Ρƒ двиТСния ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ, Π΅Π΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π½Π° Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΈ ускорСниС Ρ‚ΠΎΡ‡ΠΊΠΈ Π² Π΅Π΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ Π½Π° Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ.

Бпособы задания двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ

Π’ зависимости ΠΎΡ‚ Π²Ρ‹Π±ΠΎΡ€Π° систСмы отсчСта ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Ρ‚Ρ€ΠΈ способа задания двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ – Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΉ, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΉ ΠΈ СстСствСнный. Рассмотрим эти способы задания двиТСния Π² ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ.

Π’Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΉ способ задания двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ опрСдСляСт ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ двиТущСйся Ρ‚ΠΎΡ‡ΠΊΠΈ Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ являСтся Π·Π°ΠΊΠΎΠ½ΠΎΠΌ двиТСния ΠΏΡ€ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΌ способС задания двиТСния.

Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ называСтся Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ скорости Ρ‚ΠΎΡ‡ΠΊΠΈ. Π’Π΅ΠΊΡ‚ΠΎΡ€ скорости Ρ‚ΠΎΡ‡ΠΊΠΈ всСгда Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ ΠΏΠΎ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊ Π³ΠΎΠ΄ΠΎΠ³Ρ€Π°Ρ„Ρƒ (Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ) Π² сторону пСрСмСщСния Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ называСтся Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ускорСния Ρ‚ΠΎΡ‡ΠΊΠΈ.

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Как ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° рис.К.10, Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Π² сторону вогнутости Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ всСгда Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Π² Ρ‚Ρƒ ΠΆΠ΅ сторону, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π² сторону вогнутости Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ.

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΉ способ задания двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠšΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ скорости ΠΈ ускорСния двиТущСйся Ρ‚ΠΎΡ‡ΠΊΠΈ Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠœΠΎΠ΄ΡƒΠ»ΠΈ скорости ΠΈ ускорСния ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΉ способ опрСдСлСния двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² тСорСтичСской ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠ΅

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅:

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΉ способ опрСдСлСния двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ:

ΠŸΡ€ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΌ способС опрСдСлСния двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π±Ρ‹Ρ‚ΡŒ Π΄Π°Π½Ρ‹ уравнСния двиТСния, Ρ‚. Π΅. Π·Π°Π΄Π°Π½Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΠ°ΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:
ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Π—Π°Π΄Π°Π½ΠΈΠ΅ двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ…

Как извСстно ΠΈΠ· курса аналитичСской Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ M Π² пространствС ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π΅Π΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ P, Q ΠΈ R Π½Π° Ρ‚Ρ€ΠΈ Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныС оси (рис. 84), Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Π΅ осями ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ
Рис. 84

ПолоТСниС Ρ‚ΠΎΡ‡ΠΊΠΈ P Π½Π° оси Ox Π²ΠΏΠΎΠ»Π½Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ абсциссой Ρ…. Π‘ΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½ΠΎ Ρ‚Π°ΠΊ ΠΆΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡Π΅ΠΊ Q ΠΈ R ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ΠΎΠΉ Ρƒ ΠΈ Π°ΠΏΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΎΠΉ z.

Если Ρ‚ΠΎΡ‡ΠΊΠ° M двиТСтся ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ осСй xOyz, Ρ‚ΠΎ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π , Q ΠΈ R ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°ΡŽΡ‚ΡΡ ΠΏΠΎ осям ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ M ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ.

Для опрСдСлСния двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ M Π½ΡƒΠΆΠ½ΠΎ Π·Π½Π°Ρ‚ΡŒ Π΅Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ мгновСния, Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ ΠΈΡ… Π² функциях Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π­Ρ‚ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Ρ‚ΠΎΡ‡ΠΊΠ° Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠ³ΠΎ полоТСния ΠΏΠ΅Ρ€Π΅ΠΉΡ‚ΠΈ Π² Π΄Ρ€ΡƒΠ³ΠΎΠ΅, минуя ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹Π΅. Они Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π±Ρ‹Ρ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½Ρ‹, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Ρ‚ΠΎΡ‡ΠΊΠ° Π·Π°Π½ΠΈΠΌΠ°Π΅Ρ‚ Π² пространствС Π² ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΠΌΠ³Π½ΠΎΠ²Π΅Π½ΠΈΠ΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅.

Π‘ΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ (58) Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ кинСматичСскими уравнСниями двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ…, Π° способ опрСдСлСния двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ посрСдством ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ (58) Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΌ способом опрСдСлСния двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ. Π­Ρ‚ΠΎ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ Π½Π΅Ρ‚ΠΎΡ‡Π½ΠΎ, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ, ΠΊΡ€ΠΎΠΌΠ΅ прямолинСйных ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, сущСствуСт мноТСство Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Ρ… систСм.

Если траСктория Ρ‚ΠΎΡ‡ΠΊΠΈ Π»Π΅ΠΆΠΈΡ‚ Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости, Ρ‚ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ двумя уравнСниями Π² систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ xОy: x=x(t), y=y(t).

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΡ€ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΌ способС задания двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² пространствС Π½ΡƒΠΆΠ½ΠΎ Π·Π°Π΄Π°Ρ‚ΡŒ Π΅Π΅ Ρ‚Ρ€ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹, Π° Π½Π° плоскости—двС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΊΠ°ΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Если Ρ‚ΠΎΡ‡ΠΊΠ° двиТСтся прямолинСйно, Ρ‚ΠΎ, приняв ΠΏΡ€ΡΠΌΡƒΡŽ, ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΎΠ½Π° двиТСтся, Π·Π° ось абсцисс, ΠΌΡ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΎΠ΄Π½ΠΈΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ

Если Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π·Π°Π΄Π°Π½ΠΎ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅, Ρ‚ΠΎ для опрСдСлСния Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ Π½Π°Π΄ΠΎ ΠΈΠ· ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ двиТСния ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡŒ врСмя

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ

МоТно ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ Ρ‚ΠΎΡ‡ΠΊΠΈ, Ссли Π² уравнСниях двиТСния (58) Π΄Π°Π²Π°Ρ‚ΡŒ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρƒ t Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ значСния ΠΈ, вычислив ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Ρ‚ΡŒ полоТСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΠΎ Π΅Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ. кинСматичСскиС уравнСния двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ (58) ΠΌΠΎΠΆΠ½ΠΎ
Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ уравнСния Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ Π² парамСтричСской Ρ„ΠΎΡ€ΠΌΠ΅, Π° врСмя β€” ΠΊΠ°ΠΊ нСзависимый ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€.

Однако Π±ΠΎΠ»Π΅Π΅ ΡƒΠ΄ΠΎΠ±Π½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ, ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΠ² врСмя ΠΈΠ· ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ (58). Π’ самом Π΄Π΅Π»Π΅, Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠ΅ΠΉ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ гСомСтричСскоС мСсто всСх ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ двиТущСйся Ρ‚ΠΎΡ‡ΠΊΠΈ, Π½ΠΎ Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π½Π΅Ρ‚ понятия Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π° поэтому для получСния уравнСния Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ Π½ΡƒΠΆΠ½ΠΎ ΠΈΠ· кинСматичСских ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ двиТСния (58) ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡŒ врСмя t. Если Ρ‚ΠΎΡ‡ΠΊΠ° двиТСтся Π² плоскости, Ρ‚ΠΎ, ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΠ² врСмя ΠΈΠ· ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ (58′) ΠΈ (58″), ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅, ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅Π΅ Ρ… ΠΈ Ρƒ:

Π­Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоской ΠΊΡ€ΠΈΠ²ΠΎΠΉβ€”Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ. Если ΠΆΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Π½ΠΎ трСмя уравнСниями (58), Ρ‚ΠΎ, ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΠ² врСмя, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π΄Π²Π° уравнСния ΠΌΠ΅ΠΆΠ΄Ρƒ трСмя ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ:
ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ(59 / )

Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠ΅, ΠΊΠ°ΠΊ извСстно ΠΈΠ· аналитичСской Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, ΠΊΡ€ΠΈΠ²ΡƒΡŽ (Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ) Π² пространствС. Π’ΠΎΡ‡Π½Π΅Π΅ говоря, уравнСния (59) ΠΈΠ»ΠΈ (59′) Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‚ ΠΊΡ€ΠΈΠ²ΡƒΡŽ, которая ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈΠ»ΠΈ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ своСй части являСтся гСомСтричСским мСстом всСх ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ двиТущСйся Ρ‚ΠΎΡ‡ΠΊΠΈ.

Иногда Π±Ρ‹Π²Π°Π΅Ρ‚ Π½ΡƒΠΆΠ½ΠΎ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ Π² СстСствСнной Ρ„ΠΎΡ€ΠΌΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π·Π°Π΄Π°Π½Π½ΠΎΠ΅ Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ… уравнСниями (58), ΠΈ, ΠΊΡ€ΠΎΠΌΠ΅ уравнСния Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ, Π΄Π°Ρ‚ΡŒ Ρ‚Π°ΠΊΠΆΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ (51) двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΠΎ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ. Π§Ρ‚ΠΎΠ±Ρ‹ Π΅Π³ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ, Π½Π°Π΄ΠΎ ΠΏΡ€ΠΎΠ΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ уравнСния (58) ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² ΠΈΠ·Π²Π΅ΡΡ‚Π½ΡƒΡŽ ΠΈΠ· курса Π²Ρ‹ΡΡˆΠ΅ΠΉ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ, Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‰ΡƒΡŽ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ элСмСнта Π΄ΡƒΠ³ΠΈ:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ(60)

ΠŸΡ€ΠΎΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π² (60), ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ (51), Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‰Π΅Π΅ Π΄Π»ΠΈΠ½Ρƒ Π΄ΡƒΠ³ΠΈ s ΠΊΠ°ΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎ ΠΆΠ΅, Π·Π°ΠΊΠΎΠ½ двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΠΎ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ.

Π—Π°Π΄Π°Ρ‡Π° β„–1

По Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ Π½Π°ΠΉΡ‚ΠΈ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ΠΈ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния ΠΏΠΎ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ:

1) Ρ… = 5 cos 2t, y = 3+5sin 2t;
2) x=21,2 sin 2 t, Ρƒ = 21,2 cos 2t.

Π’ ΠΎΠ±ΠΎΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ… Π·Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ Π΄Π»ΠΈΠ½Ρ‹ принят сантимСтр, Π·Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ β€” сСкунда.

РСшСниС. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ΠΏΠΎ уравнСниям двиТСния, пСрСнСсСм Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌ ΠΈΠ· Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ 3 Π²Π»Π΅Π²ΠΎ, Π²ΠΎΠ·Π²Π΅Π΄Π΅ΠΌ ΠΎΠ±Π° уравнСния Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΈ, слоТив, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ

Π­Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ окруТности с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅: x = 0, y = +3.

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π·Π°ΠΊΠΎΠ½ двиТСния, ΠΏΡ€ΠΎΠ΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌ Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ уравнСния: dx=β€”10 sin 2t dt, dy = 10 cos 2t dt.

Возводя Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, складывая, извлСкая ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈ интСгрируя, Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ Π·Π°ΠΊΠΎΠ½ двиТСния ΠΏΠΎ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ:
s=10t + C, Π³Π΄Π΅ C = s0.

2) Π˜ΡΠΊΠ»ΡŽΡ‡ΠΈΠΌ врСмя ΠΈΠ· ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ двиТСния Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅:

Π­Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ… ΠΈ Ρƒ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, траСктория-прямая линия. ΠŸΡ€ΡΠΌΠ°Ρ отсСкаСт Π½Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… направлСниях осСй ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ ΠΏΠΎ 21,2 см. Однако Π½Π΅ вся прямая слуТит Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠ΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ: ΠΈΠ· Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ… ΠΈ Ρƒ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π±Ρ‹Ρ‚ΡŒ всСгда ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ ΠΈ Π½Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ большС 21,2 см ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ, поэтому Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠ΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ являСтся лишь ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ прямой x+y = 21,2, Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ Π² ΠΏΠ΅Ρ€Π²ΠΎΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Π½Ρ‚Π΅ (рис. 85).

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ
Рис. 85

На этом ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΌΡ‹ Π²ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠ΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈΠ½ΠΎΠ³Π΄Π° являСтся лишь Ρ‡Π°ΡΡ‚ΡŒ Π»ΠΈΠ½ΠΈΠΈ, Π²Ρ‹Ρ€Π°ΠΆΠ°Π΅ΠΌΠΎΠΉ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ.

ΠŸΡ€ΠΎΠ΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌ уравнСния двиТСния:

dx = 21,2 βˆ™ 2 sin t cos t dt,
dy = 21,2 βˆ™ 2 sin t cos t dt.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ no Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (60) Π½Π΅Ρ‚Ρ€ΡƒΠ΄Π½ΠΎ Π½Π°ΠΉΡ‚ΠΈ элСмСнт Π΄ΡƒΠ³ΠΈ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ля получСния уравнСния (51) двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΠΎ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ остаСтся лишь ΠΏΡ€ΠΎΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½Π°ΠΉΠ΄Π΅Π½Π½ΠΎΠ΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅. Π˜Π½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌ ΠΈ подставляСм Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Π΅ условия (ΠΏΡ€ΠΈ t= 0, s0 = 0):

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠžΡ‚Π²Π΅Ρ‚. УравнСния Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΉ x 2 +(y-3) 2 = 25 ΠΈ x+y=21,2; уравнСния двиТСния ΠΏΠΎ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ s=10t+s0 ΠΈ s = 30 sin 2 t.

Π—Π°Π΄Π°Ρ‡Π° β„–2

Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π·Π°Π΄Π°Π½ΠΎ уравнСниями:
Ρ… = x’ cos Ο† (t)β€”y’ sin Ο† (t),
y = x’ sin Ο† (t) + y’ cos Ο† (t),

Π³Π΄Π΅ Ρ…’ ΠΈ Ρƒ’ β€” Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ постоянныС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, a Ο†(t)β€” любая функция Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ Ρ‚ΠΎΡ‡ΠΊΠΈ.

РСшСниС. Π’ΠΎΠ·Π²Π΅Π΄Π΅ΠΌ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΠΈΠ· ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, Π° Π·Π°Ρ‚Π΅ΠΌ слоТим ΠΈΡ…:

ΠžΡ‚Π²Π΅Ρ‚. ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ Π² Π½Π°Ρ‡Π°Π»Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ радиуса ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ.

Π—Π°Π΄Π°Ρ‡Π° β„–3

ПоСзд Π΄Π»ΠΈΠ½ΠΎΠΉ l ΠΌ сначала ΠΈΠ΄Π΅Ρ‚ ΠΏΠΎ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΌΡƒ ΠΏΡƒΡ‚ΠΈ (рис. 86, Π°), Π° ΠΏΠΎΡ‚ΠΎΠΌ поднимаСтся Π² Π³ΠΎΡ€Ρƒ ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ 2Ξ± ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ. Бчитая ΠΏΠΎΠ΅Π·Π΄ ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ Π»Π΅Π½Ρ‚ΠΎΠΉ, Π½Π°ΠΉΡ‚ΠΈ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ Π΅Π³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π° тяТСсти.

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ
Рис. 86

РСшСниС. Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ Π½ΡƒΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ†Π΅Π½Ρ‚Ρ€Π° тяТСсти ΠΏΠΎΠ΅Π·Π΄Π°, Π½Π°ΠΉΡ‚ΠΈ уравнСния двиТСния Ρ†Π΅Π½Ρ‚Ρ€Π° тяТСсти ΠΈ ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡŒ ΠΈΠ· Π½ΠΈΡ… врСмя.

Направим оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΏΠΎ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ ΠΈ внСшнСй Ρ€Π°Π²ΠΈΠΎΠ΄Π΅Π»ΡΡˆΠ½ΠΌ ΡƒΠ³Π»Π° 2Ξ± (рис. 86, Π±). ВраСктория Ρ†Π΅Π½Ρ‚Ρ€Π° тяТСсти ΠΏΠΎΠ΅Π·Π΄Π° Π½Π΅ зависит ΠΎΡ‚ скорости ΠΏΠΎΠ΅Π·Π΄Π°. Для простоты подсчСтов ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ ΠΈΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ Ο… ΠΌ/сСк ΠΈ Π² Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΌΠ³Π½ΠΎΠ²Π΅Π½ΠΈΠ΅ t=0 подошСл ΠΊ Π³ΠΎΡ€Π΅.

Π’ΠΎΠ³Π΄Π° Π·Π° врСмя t сСк Π½Π° Π³ΠΎΡ€Ρƒ поднимСтся Ο…t ΠΌ состава ΠΏΠΎΠ΅Π·Π΄Π° ΠΈ останСтся Π½Π° Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΌ ΠΏΡƒΡ‚ΠΈ l β€” Ο…t ΠΌ. Π‘ΡƒΠ΄Π΅ΠΌ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π΅Π΄ΠΈΠ½ΠΈΡ†Π° Π΄Π»ΠΈΠ½Ρ‹ ΠΏΠΎΠ΅Π·Π΄Π° вСсит Ξ³.

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ (48), Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ†Π΅Π½Ρ‚Ρ€Π° тяТСсти ΠΏΠΎΠ΅Π·Π΄Π°:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ†Π΅Π½Ρ‚Ρ€Π° тяТСсти прСдставлСны здСсь ΠΊΠ°ΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΡΠ²Π»ΡΡŽΡ‚ΡΡ уравнСниями двиТСния Ρ†Π΅Π½Ρ‚Ρ€Π° тяТСсти ΠΏΠΎΠ΅Π·Π΄Π°. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΡΡ t (ΠΈΠ»ΠΈ Ο…t) ΠΈΠ· ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ уравнСния ΠΈ подставляя Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠ΅, Π½Π°ΠΉΠ΄Π΅ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Π—Π°Π΄Π°Ρ‡Π° β„–4

ΠœΠΎΡΡ‚ΠΎΠ²ΠΎΠΉ ΠΊΡ€Π°Π½ двиТСтся вдоль Ρ†Π΅Ρ…Π° согласно ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ Ρ… = t; ΠΏΠΎ ΠΊΡ€Π°Π½Ρƒ катится Π² ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ Ρ‚Π΅Π»Π΅ΠΆΠΊΠ° согласно ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ Ρƒ = 1,5t (Ρ… ΠΈ Ρƒβ€”Π² ΠΌ, t β€” Π² сСк). ЦСпь укорачиваСтся со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ t>=0,5. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ Ρ†Π΅Π½Ρ‚Ρ€Π° тяТСсти Π³Ρ€ΡƒΠ·Π° (Π² Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΌ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ Ρ†Π΅Π½Ρ‚Ρ€ тяТСсти Π³Ρ€ΡƒΠ·Π° находился Π² Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ плоскости Ρ…ΠžΡƒ, ось Oz Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎ Π²Π²Π΅Ρ€Ρ…).

РСшСниС. Π’ условии Π·Π°Π΄Π°Ρ‡ΠΈ Π΄Π°Π½Ρ‹ лишь Π΄Π²Π° уравнСния двиТСния ΠΈ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π³Ρ€ΡƒΠ·Π°:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΎΡ‚ΠΊΡƒΠ΄Π° dz = 0,5dt, ΠΈ Π»Π΅Π³ΠΊΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

z = 0,5t

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠ² t ΠΈΠ· ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ уравнСния, подставим Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠ΅ ΠΈ Π² Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅:

y= 1,5x, z = 0,5x

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π³Ρ€ΡƒΠ·Π° Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΎΠ±ΠΎΠΈΠΌ уравнСниям, Ρ‚. Π΅. траСктория Π»Π΅ΠΆΠΈΡ‚ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ Π² ΠΎΠ±Π΅ΠΈΡ… плоскостях ΠΈ являСтся Π»ΠΈΠ½ΠΈΠ΅ΠΉ ΠΈΡ… пСрСсСчСния.
ΠžΡ‚Π²Π΅Ρ‚. ΠŸΡ€ΡΠΌΠ°Ρ.

АлгСбраичСская Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° скорости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΡƒΡŽ ось Ρ€Π°Π²Π½Π° ΠΏΠ΅Ρ€Π²ΠΎΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡ‚ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:
ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

АлгСбраичСская Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° скорости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ось

ΠŸΡƒΡΡ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ M опрСдСляСтся трСмя уравнСниями:
x =x(t), (58′)
y = y(t), (58″)
z = z(t). (58″‘)

По ΠΌΠ΅Ρ€Π΅ двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ M Π² пространствС Π΅Π΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ P, Q ΠΈ R двиТутся ΠΏΠΎ своим прямолинСйным траСкториям, Ρ‚. Π΅. ΠΏΠΎ осям ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, ΠΈ ΠΈΡ… двиТСния Π²ΠΏΠΎΠ»Π½Π΅ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ двиТСнию Ρ‚ΠΎΡ‡ΠΊΠΈ М.

Π’Π°ΠΊ, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° (абсцисса) Ρ‚ΠΎΡ‡ΠΊΠΈ P всСгда Ρ€Π°Π²Π½Π° абсциссС Ρ‚ΠΎΡ‡ΠΊΠΈ М, Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ QnR всСгда Ρ€Π°Π²Π½Ρ‹ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π΅ ΠΈ Π°ΠΏΠΏΠ»ΠΈΠΊΠ°Ρ‚Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ М. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΡ€ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ M Π² пространствС согласно уравнСниям (58) Ρ‚ΠΎΡ‡ΠΊΠ° P двиТСтся ΠΏΠΎ оси Ox согласно ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ (58′), Π° Ρ‚ΠΎΡ‡ΠΊΠΈ Q ΠΈ Rβ€” соотвСтствСнно ΠΏΠΎ осям Oy ΠΈ Oz согласно уравнСниям (58″) ΠΈ (58″‘).

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ M Π² пространствС ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π»ΠΎΠΆΠΈΡ‚ΡŒ Π½Π° Ρ‚Ρ€ΠΈ прямолинСйных двиТСния Π΅Π΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ P, Q ΠΈ R.

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ο…p Ρ‚ΠΎΡ‡ΠΊΠΈ P ΠΏΡ€ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ этой Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΠΎ Π΅Π΅ прямолинСйной Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ΠžΡ…, ΠΈΠ½Ρ‹ΠΌΠΈ словами, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ M Π½Π° ось ΠžΡ….

АлгСбраичСская Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° скорости выраТаСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (53), ΠΏΡ€ΠΈΡ‡Π΅ΠΌ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ расстояния Ρ‚ΠΎΡ‡ΠΊΠΈ P являСтся Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» абсциссы Ρ…, Π° поэтому

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ(61)

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, алгСбраичСская Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° скорости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ P Ρ‚ΠΎΡ‡ΠΊΠΈ M Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΡƒΡŽ ось Ρ€Π°Π²Π½Π° ΠΏΠ΅Ρ€Π²ΠΎΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡ‚ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ… ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t. Она ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°, Ссли Ρ‚ΠΎΡ‡ΠΊΠ° P двиТСтся Π² ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ оси ΠžΡ…, ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π°, Ссли Ρ‚ΠΎΡ‡ΠΊΠ° P двиТСтся Π² ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ.
Аналогично ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ алгСбраичСскиС скорости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ Q ΠΈ R Π½Π° ось Oy ΠΈ Π½Π° ось Oz:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ(61″)

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ(61″‘)

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ скоростСй ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ, Π½Π°Π΄ΠΎ ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ (61) Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹:
ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ(61)

АлгСбраичСская Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° скорости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ось Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости Ρ‚ΠΎΠΉ ΠΆΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° Ρ‚ΡƒΠΆΠ΅ ось:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ΠΈ проСкция скорости

ΠŸΡƒΡΡ‚ΡŒ Ρ‚ΠΎΡ‡ΠΊΠ° М Π·Π° бСсконСчно ΠΌΠ°Π»Ρ‹ΠΉ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ dt ΠΏΠ΅Ρ€Π΅Π΄Π²ΠΈΠ½ΡƒΠ»Π°ΡΡŒ ΠΏΠΎ своСй Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ Π½Π° элСмСнт Π΄ΡƒΠ³ΠΈ ds, Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π²Ρ‹Ρ€Π°Π·ΠΈΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ (60):
ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Π³Π΄Π΅ dx, dy ΠΈ dz β€” ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ элСмСнта Π΄ΡƒΠ³ΠΈ Π½Π° оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, ΠΈΠ»ΠΈ, Π§Ρ‚ΠΎ Ρ‚ΠΎ ΠΆΠ΅, элСмСнтарныС приращСния ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ М.

На рис. 87 эти элСмСнты условно ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Ρ‹ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹ΠΌΠΈ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°ΠΌΠΈ. Как Π²ΠΈΠ΄Π½ΠΎ ΠΈΠ· Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ°, косинусы ΡƒΠ³Π»ΠΎΠ², составляСмых элСмСнтарным ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ΠΌ (Π° ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ Ρ‚ΠΎΡ‡ΠΊΠΈ), с осями Ρ…, Ρƒ ΠΈ z соотвСтствСнно Ρ€Π°Π²Π½Ρ‹

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ(62)

Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° скорости Ρ‚ΠΎΡ‡ΠΊΠΈ M ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° ΠΏΠΎ (53):

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡŽ скорости ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽΠ½Π° ΠΊΠ°ΠΊΡƒΡŽ-Π»ΠΈΠ±ΠΎ ось, Π½Π°Π΄ΠΎ ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ скорости Π½Π° косинус ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ скорости ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ этой оси. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, для ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ скорости Ρ‚ΠΎΡ‡ΠΊΠΈ M Π½Π° оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈΠΌΠ΅Π΅ΠΌ:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ(63′)

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ(63″)

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ(63″‘)

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ
Рис. 87

РавСнства (63) словами Π½ΡƒΠΆΠ½ΠΎ Ρ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ: проСкция скорости Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ось Ρ€Π°Π²Π½Π° алгСбраичСской скорости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° Ρ‚Ρƒ ΠΆΠ΅ ось.

Π—Π°Π΄Π°Ρ‡Π° β„–5

Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ проСкция ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽΡΠΊΠΎΡ€ΠΎΡΡ‚ΠΈ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽΡ‚ΠΎΡ‡ΠΊΠΈ M (Ρ…, Ρƒ, z) ΠΈΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Ρ…ΠžΡƒ равняСтся скорости ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ, с ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ двиТСтся ΠΏΠΎ плоскости проСкция M1 (Ρ…, Ρƒ, О) Ρ‚ΠΎΡ‡ΠΊΠΈ M Π½Π° Ρ‚Ρƒ ΠΆΠ΅ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ.

РСшСниС. Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽΡ‚ΠΎΡ‡ΠΊΠΈ M составляСт с осью Oz ΡƒΠ³ΠΎΠ» Ξ³Ο…, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΡƒΠ³ΠΎΠ», составляСмый Сю с ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ Ρ…ΠžΡƒ, Ρ€Π°Π²Π΅Π½ 90Β° β€” yΟ… ΠΏ косинус этого ΡƒΠ³Π»Π° Ρ€Π°Π²Π΅Π½ sinΞ³Ο…. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости Ρ‚ΠΎΡ‡ΠΊΠΈ M Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Ρ…ΠžΡƒ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Подводя ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽΠΏΠΎΠ΄ Ρ€Π°Π΄ΠΈΠΊΠ°Π» ΠΈ выраТая cosΞ³Ο…, ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (62), ΠΌΡ‹ убСдимся, Ρ‡Ρ‚ΠΎ проСкция скорости Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Ρ€Π°Π²Π½Π° ΠΏΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ скорости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

НаправлСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽΠΈ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽΡ‚ΠΎΠΆΠ΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ косинусы ΠΈΡ… ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π΄ΠΎΠΊΠ°Π·Π°Π½Π°.

ΠœΠΎΠ΄ΡƒΠ»ΡŒ скорости Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ€Π°Π²Π΅Π½ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠΌΡƒ ΠΊΠΎΡ€Π½ΡŽ ΠΈΠ· суммы ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ скорости Π½Π° оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚:
ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠœΠΎΠ΄ΡƒΠ»ΡŒ скорости. Π’ΠΎΠ·Π²Π΅Π΄Π΅ΠΌ Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΠΈΠ· равСнств:
ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ(63)

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Π‘ΡƒΠΌΠΌΠ° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… косинусов Ρ€Π°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅ ΠΈ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ(64)

ΠŸΠ΅Ρ€Π΅Π΄ Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΠΎΠΌ взят ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π·Π½Π°ΠΊ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° скорости (Π΅Π΅ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ) всСгда ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°. Π’ этом Π΅Π΅ сущСствСнноС ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ алгСбраичСской Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ скорости (53), Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π΅ΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΡ€ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ΠΈ ΠΈΠΌΠ΅ΡŽΡ‰Π΅ΠΉ Π·Π½Π°ΠΊ Β« + Β» ΠΈΠ»ΠΈ Β«β€”Β» Π² зависимости ΠΎΡ‚ направлСния двиТСния. Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ (64) ΠΈΠ½ΠΎΠ³Π΄Π° Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΠΎΠ»Π½ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ.

НаправлСниС скорости ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌ косинусам скорости:
ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΠ°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ косинусы скорости

РавСнство (64) позволяСт ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ скорости Ρ‚ΠΎΡ‡ΠΊΠΈ, Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π·Π°Π΄Π°Π½ΠΎ уравнСниями (58). НаправлСниС скорости опрСдСляСтся ΠΏΠΎ косинусам ΡƒΠ³Π»ΠΎΠ², составляСмых ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ направлСниями осСй ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ скорости. ЗначСния этих косинусов, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌΠΈ косинусами скорости, ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΠΈΠ· ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ (63):

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ(62′)

Π³Π΄Π΅ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ, ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽΠΈ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽβ€” ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ ΠΎΡ‚ Ρ…, Ρƒ ΠΈ z ΠΏΠΎ t.

Π—Π°Π΄Π°Ρ‡Π° β„–6

УравнСния двиТСния ΡΡƒΡ‚ΡŒ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ.

РСшСниС. Из ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ двиТСния слСдуСт, Ρ‡Ρ‚ΠΎ Ρ… ΠΈ Ρƒ всСгда большС нуля.
Для опрСдСлСния уравнСния Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ Π²ΠΎΠ·Π²Π΅Π΄Π΅ΠΌ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΠΈΠ· ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ двиТСния Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΈ составим Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ

Для опрСдСлСния скорости Π½Π°ΠΉΠ΄Π΅ΠΌ сначала Π΅Π΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Π° Π·Π°Ρ‚Π΅ΠΌ ΡƒΠΆΠ΅ ΠΈ ΠΏΠΎΠ»Π½ΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ.

Π—Π°Π΄Π°Ρ‡Π° β„–7

Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π·Π°Π΄Π°Π½ΠΎ уравнСниями

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΏΡ€ΠΈΡ‡Π΅ΠΌ ось Ox Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°, ось Oy Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΠΎ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΠΈ Π²Π²Π΅Ρ€Ρ…, Ο…0, g ΠΈ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽβ€”Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ постоянныС. Найти Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΈΠ²Ρ‹ΡΡˆΠ΅Π³ΠΎ Π΅Π΅ полоТСния, ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ оси Π² Ρ‚ΠΎΡ‚ ΠΌΠΎΠΌΠ΅Π½Ρ‚, ΠΊΠΎΠ³Π΄Π° Ρ‚ΠΎΡ‡ΠΊΠ° находится Π½Π° оси ΠžΡ….

РСшСниС. УравнСния ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π°, Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ Ο…0 ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ Ξ±0 ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ (ΠΊ оси ΠžΡ…).
Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ врСмя ΠΈΠ· ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ уравнСния ΠΈ подставим Π½Π°ΠΉΠ΄Π΅Π½Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠ΅; ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π½Π°Ρ‡Π°Π»ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ (рис. 88).

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ
Рис. 88

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΈΠ²Ρ‹ΡΡˆΠ΅Π³ΠΎ полоТСния, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ извСстныС ΠΈΠ· Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ исчислСния ΠΏΡ€Π°Π²ΠΈΠ»Π° нахоТдСния максимума Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚. Π΅. Π²Π·ΡΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ, приравняв Π΅Π΅ Π½ΡƒΠ»ΡŽ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ… ΠΈ, подставив Π΅Π³ΠΎ Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρƒ, ΡƒΠ±Π΅Π΄ΠΈΠ²ΡˆΠΈΡΡŒ ΠΏΡ€ΠΈ этом, Ρ‡Ρ‚ΠΎ вторая производная ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Однако ΠΌΡ‹ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΈΠ²Ρ‹ΡΡˆΠ΅Π³ΠΎ полоТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ, для Ρ‡Π΅Π³ΠΎ, ΠΏΡ€ΠΎΠ΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π² ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ уравнСния двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ, Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π΅Π΅ скорости:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠŸΠ΅Ρ€Π²ΠΎΠ΅ ΠΈΠ· этих ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ проСкция скорости Π½Π° Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΡƒΡŽ ось постоянна ΠΈ Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ скорости.

ИсслСдованиС Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ уравнСния ΡƒΠ±Π΅ΠΆΠ΄Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ проСкция скорости Π½Π° Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΡƒΡŽ ось Π² Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΌΠ³Π½ΠΎΠ²Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π° ΠΈ Ρ€Π°Π²Π½Π° Ο…0 sin Ξ±0; Π·Π°Ρ‚Π΅ΠΌ, ΠΏΠΎ ΠΌΠ΅Ρ€Π΅ увСличСния t, проСкция Ο…y ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ, ΠΎΡΡ‚Π°Π²Π°ΡΡΡŒ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π΄ΠΎ мгновСния ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ, ΠΊΠΎΠ³Π΄Π° Ο…y обращаСтся Π² Π½ΡƒΠ»ΡŒ, послС Ρ‡Π΅Π³ΠΎ Ο…y становится ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ, возрастая ΠΏΠΎ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ‚ΠΎΡ‡ΠΊΠ° двиТСтся Π²ΠΏΡ€Π°Π²ΠΎ, сначала поднимаясь, Π·Π°Ρ‚Π΅ΠΌ ΠΎΠΏΡƒΡΠΊΠ°ΡΡΡŒ. МгновСниС ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Ρ‚ΠΎΡ‡ΠΊΠ° ΠΊΠΎΠ½Ρ‡ΠΈΠ»Π° ΠΏΠΎΠ΄Π½ΠΈΠΌΠ°Ρ‚ΡŒΡΡ, Π½ΠΎ Π΅Ρ‰Π΅ Π½Π΅ Π½Π°Ρ‡Π°Π»Π° ΠΎΠΏΡƒΡΠΊΠ°Ρ‚ΡŒΡΡ, соотвСтствуСт ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ ΠΏΠΎΠ΄ΡŠΠ΅ΠΌΡƒ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π’ это ΠΌΠ³Π½ΠΎΠ²Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π° ΠΈ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΡ Π½Π°ΠΉΠ΄Π΅Π½Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ t Π² уравнСния двиТСния, Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΈΠ²Ρ‹ΡΡˆΠ΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости Π² ΠΌΠ³Π½ΠΎΠ²Π΅Π½ΠΈΠ΅, ΠΊΠΎΠ³Π΄Π° Ρ‚ΠΎΡ‡ΠΊΠ° находится Π½Π° оси ΠžΡ…. Π’ это ΠΌΠ³Π½ΠΎΠ²Π΅Π½ΠΈΠ΅ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ. ΠŸΡ€ΠΈΡ€Π°Π²Π½ΡΠ΅ΠΌ ΠΏΡƒΠ»ΡŽ Π²Ρ‚ΠΎΡ€ΠΎΠ΅ ΠΈΠ· ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ двиТСния:
ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Π’ΠΎΡ‡ΠΊΠ° находится Π½Π° оси Ox Π΄Π²Π° Ρ€Π°Π·Π°: ΠΏΡ€ΠΈ t=0 ΠΏΡ€ΠΈ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠŸΠ΅Ρ€Π²ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ t соотвСтствуСт Π½Π°Ρ‡Π°Π»Ρƒ двиТСния, Π²Ρ‚ΠΎΡ€ΠΎΠ΅ β€”ΠΏΠ°Π΄Π΅Π½ΠΈΡŽ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ось ΠžΡ…. Π’Ρ‚ΠΎΡ€ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ всСго ΠΏΠΎΠ»Π΅Ρ‚Π°, ΠΈ ΠΎΠ½ΠΎ Π²Π΄Π²ΠΎΠ΅ большС ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Π½Π°ΠΌΠΈ Ρ€Π°Π½Π΅Π΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π½Π°ΠΈΠ²Ρ‹ΡΡˆΠ΅Π³ΠΎ подъСма: врСмя падСния Ρ€Π°Π²Π½ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ подъСма.

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΡ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ t=0 Π² уравнСния, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΠ΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости, Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости Π² Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΌΠ³Π½ΠΎΠ²Π΅Π½ΠΈΠ΅:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΡ Π²Ρ‚ΠΎΡ€ΠΎΠ΅ ΠΈΠ· Π½Π°ΠΉΠ΄Π΅Π½Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ t, Π½Π°ΠΉΠ΄Π΅ΠΌ скорости Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ падСния:

ΠžΡ‚Π²Π΅Ρ‚: 1) ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Π° ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

2) ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

3) Ο…x = Ο…0 cos Ξ±0, Ο…y = ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽΟ…0 sin Ξ±0.

ΠΏΡ€ΠΈΡ‡Π΅ΠΌ Π²Π΅Ρ€Ρ…Π½ΠΈΠΉ Π·Π½Π°ΠΊ соотвСтствуСт Π½Π°Ρ‡Π°Π»Ρƒ двиТСния, Π° Π½ΠΈΠΆΠ½ΠΈΠΉβ€”ΠΊΠΎΠ½Ρ†Ρƒ.

Π—Π°Π΄Π°Ρ‡Π° β„–8

По осям ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ (рис. 89) ΡΠΊΠΎΠ»ΡŒΠ·ΡΡ‚ Π΄Π²Π΅ ΠΌΡƒΡ„Ρ‚Ρ‹ A ΠΈ B, соСдинСнныС стСрТнСм AB Π΄Π»ΠΈΠ½ΠΎΠΉ l. Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π’ Ρ€Π°Π²Π½Π° Ο…B.

ΠŸΡ€ΠΈ ΠΊΠ°ΠΊΠΎΠΌ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ ΠΌΡƒΡ„Ρ‚ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΌΡƒΡ„Ρ‚Ρ‹ А Π²Π΄Π²ΠΎΠ΅ большС Ο…B?

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

РСшСниС. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚ΠΎΡ‡ΠΊΠΈ А связана с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Π’ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ΠΌ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Бчитая Ρ… ΠΈ Ρƒ функциями Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ ΠΏΡ€ΠΎΠ΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π² это равСнство ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π½Π°ΠΉΠ΄Π΅ΠΌ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ скоростями ΠΎΠ±Π΅ΠΈΡ… Ρ‚ΠΎΡ‡Π΅ΠΊ:
ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Но ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽΠΈ ΠΏΠΎ ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ Π½Π°Π΄ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽΠ±Ρ‹Π»Π° Ρ€Π°Π²Π½Π° 2Ο…B, Ρ‚. Π΅.

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΎΡ‚ΠΊΡƒΠ΄Π° послС алгСбраичСских ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΎΡ‚Π²Π΅Ρ‚.

ΠžΡ‚Π²Π΅Ρ‚: ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ(см. Π·Π°Π΄Π°Ρ‡ΠΈ β„– 57 ΠΈ 89, Π³Π΄Π΅ Π΄Π°Π½Ρ‹ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ).

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ ускорСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΡƒΡŽ ось Ρ€Π°Π²Π½Π° ΠΏΠ΅Ρ€Π²ΠΎΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΡ‚ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости Π½Π° Ρ‚Ρƒ ΠΆΠ΅ ось ΠΈΠ»ΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡ‚ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:
ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

УскорСниС ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ΠΈ проСкция ускорСния

УскорСниС Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΠ΅Ρ‚ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ скорости Ρ‚ΠΎΡ‡ΠΊΠΈ Π² Π΄Π°Π½Π½ΠΎΠ΅ ΠΌΠ³Π½ΠΎΠ²Π΅Π½ΠΈΠ΅. Оно выраТаСтся ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠΌ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ измСнСния Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости ΠΊ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΌΡƒ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΡƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ стрСмлСнии этого ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ° Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΊ Π½ΡƒΠ»ΡŽ.

Для Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ускорСниС Ρ‚ΠΎΡ‡ΠΊΠΈ M ΠΏΡ€ΠΈ Π΅Π΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π² пространствС, рассмотрим сначала Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ оси Ox Ρ‚ΠΎΡ‡ΠΊΠΈ Π , ΡΠ²Π»ΡΡŽΡ‰Π΅ΠΉΡΡ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠ΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ M Π½Π° эту ось.

ΠŸΡƒΡΡ‚ΡŒ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΌΠ³Π½ΠΎΠ²Π΅Π½ΠΈΠ΅ t алгСбраичСская Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° скорости Ρ‚ΠΎΡ‡ΠΊΠΈ P Π±Ρ‹Π»Π° Ο…Ρ…, Π° Π² ΠΌΠ³Π½ΠΎΠ²Π΅Π½ΠΈΠ΅ tl = t + Ξ”t стала Ο…x+βˆ†Ο…x. Π’ΠΎΠ³Π΄Π° ускорСниС Ρ‚ΠΎΡ‡ΠΊΠΈ P ΠΏΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ ΠΈ ΠΏΠΎ Π·Π½Π°ΠΊΡƒ выразится ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠΌ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Если Π·Π½Π°ΠΊΠΈ Ο…x ΠΈ ap ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹, Ρ‚ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ P ускорСнноС, Π° Ссли Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹, Ρ‚ΠΎ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅.

Аналогично выразятся ускорСния ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ Q ΠΈ R Ρ‚ΠΎΡ‡ΠΊΠΈ M Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ оси:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Ο…x, Ο…y ΠΈ Ο…z сами ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΡ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ, поэтому ускорСния ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ Π²Ρ‚ΠΎΡ€Ρ‹ΠΌΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΡ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π­Ρ‚ΠΈ равСнства Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, Π½ΠΎ ΠΈ Π·Π½Π°ΠΊΠΈ ускорСний ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ. Π˜Π½Ρ‹ΠΌΠΈ словами, ΠΎΠ½ΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‚ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ алгСбраичСских скоростСй ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ P, Q ΠΈ R Π² ΠΌΠ³Π½ΠΎΠ²Π΅Π½ΠΈΠ΅ t.

Волько Ρ‡Ρ‚ΠΎ доказанная Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° ΠΎ равСнствС алгСбраичСской скорости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ось ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости Ρ‚ΠΎΠΉ ΠΆΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° Ρ‚Ρƒ ΠΆΠ΅ ось справСдлива для любого ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, эта Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° относится Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΊ скорости, Π½ΠΎ ΠΈ ΠΊ Π΅Π΅ измСнСнию Π² любоС ΠΌΠ³Π½ΠΎΠ²Π΅Π½ΠΈΠ΅, Ρ‚. Π΅. ΠΊ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ. Π­Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‚ΠΎ написанныС Π²Ρ‹ΡˆΠ΅ равСнства Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‚ Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ax, Π°Ρƒ ΠΈ Π°z ускорСния Π° Ρ‚ΠΎΡ‡ΠΊΠΈ M Π½Π° оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ox, Oy ΠΈ Oz:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ(65)

Π³Π΄Π΅ cosΞ±a, cosΞ²a ΠΈ cosΞ³aβ€”Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ косинусы ускорСния.

МоТно Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ эти Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ (65) ΠΊΠ°ΠΊ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹Π΅ ΠΏΠΎ осям ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ(65′)

ΠœΠΎΠ΄ΡƒΠ»ΡŒ ускорСния Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ€Π°Π²Π΅Π½ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠΌΡƒ ΠΊΠΎΡ€Π½ΡŽ ΠΈΠ· суммы ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ ускорСния Π½Π° оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚:
ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ускорСния ΠΏΡ€ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΌ способС задания двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ

Π’ΠΎΠ·Π²Π΅Π΄Π΅ΠΌ Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΠΈΠ· равСнств:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ(66)

ΠŸΠ΅Ρ€Π΅Π΄ Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΠΎΠΌ взят Π·Π½Π°ΠΊ плюс, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°β€”Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ. УскорСниС Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ ускорСния Π½Π° оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈΠ»ΠΈ Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΠ΅ направлСния ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΌ ускорСниСм. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ равСнство (66) ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΎΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ: Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ускорСния Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ€Π°Π²Π½Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠΌΡƒ ΠΊΠΎΡ€Π½ΡŽ ΠΈΠ· суммы ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ Π½Π° оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

НаправлСниС ускорСния ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌ косинусам ускорСния:
ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ, ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΠ°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ косинусы ускорСния

НаправлСниС ускорСния ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ ΠΏΠΎ косинусам ΡƒΠ³Π»ΠΎΠ², составляСмых ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ направлСниями осСй ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ с Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ускорСния. Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… косинусов ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΈΠ· ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ (65):
ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ (67′)

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ (67»)

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ (67»’)

Для опрСдСлСния направлСния ускорСния Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΌ случаС Π½Π°Π΄ΠΎ сначала Π½Π°ΠΉΡ‚ΠΈ ускорСниС ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ ΠΏΠΎ (65), для Ρ‡Π΅Π³ΠΎ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π΄Π²Π°ΠΆΠ΄Ρ‹ ΠΏΡ€ΠΎΠ΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ уравнСния двиТСния (58), Π·Π°Ρ‚Π΅ΠΌ Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ ускорСния ΠΏΠΎ (66), Π° ΠΏΠΎΡ‚ΠΎΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ косинусы ускорСния ΠΏΠΎ (67).

НаправлСниС ускорСния ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π½Π΅ совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ скорости, ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ косинусы (67) ускорСния Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€ΠΈ прямолинСйном ускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ постоянно Ρ€Π°Π²Π½Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌ косинусам (62) скорости.

Π—Π°Π΄Π°Ρ‡Π° β„–9

РСшСниС. Из уравнСния двиТСния Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ M ΡΠ²Π»ΡΡŽΡ‚ΡΡ проСкциями Π½Π° ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ оси радиуса-Π²Π΅ΠΊΡ‚ΠΎΡ€Π° r, ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ с осью абсцисс ΡƒΠ³ΠΎΠ» Ο€t:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Для опрСдСлСния Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈΡΠΊΠ»ΡŽΡ‡Π°Π΅ΠΌ врСмя ΠΈΠ· ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ двиТСния. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ окруТности

x 2 + y 2 = r 2

НайдСм Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости Π½Π° оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, для Ρ‡Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ уравнСния двиТСния:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΎΡ‚ΠΊΡƒΠ΄Π° ΠΏΠΎ (64) ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ скорости

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° скорости Ρ‚ΠΎΡ‡ΠΊΠΈ M постоянна.

ΠΠ°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ косинусы скорости ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (62′):

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Π­Ρ‚ΠΈ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ скорости Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎ мСняСтся ΠΈ Ρ‡Ρ‚ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ пСрпСндикулярна радиусу-Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΌΡƒ ΠΈΠ· Ρ†Π΅Π½Ρ‚Ρ€Π° О Π² Ρ‚ΠΎΡ‡ΠΊΡƒ М.

УскорСниС Ρ‚ΠΎΡ‡ΠΊΠΈ M Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΠΎ Π΅Π³ΠΎ проСкциям, для Ρ‡Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌ выраТСния, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ для ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ скорости:
ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΎΡ‚ΠΊΡƒΠ΄Π° ΠΏΠΎ (66) ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ ускорСния

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

УскорСниС Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΠ΅Ρ‚ быстроту измСнСния Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅, Π½ΠΎ ΠΈ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ, поэтому, нСсмотря Π½Π° постоянство модуля скорости Ρ‚ΠΎΡ‡ΠΊΠΈ М, ускорСниС этой Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π΅ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ. Как Π²ΠΈΠ΄Π½ΠΎ ΠΈΠ· ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ
Рис. 90

равСнства, Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ускорСния постоянна. НаправлСниС ускорСния ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌ косинусам согласно (67):
ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

НаправлСниС ускорСния Ρ‚ΠΎΡ‡ΠΊΠΈ M ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ радиуса-Π²Π΅ΠΊΡ‚ΠΎΡ€Π°.
ПолоТСния Ρ‚ΠΎΡ‡ΠΊΠΈ M Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ мгновСния ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ‹ Π½Π° рис. 90, Π°, Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ скорости β€” Π½Π° рис. 90,6 ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ускорСния β€” Π½Π° рис. 90, Π².

Π—Π°Π΄Π°Ρ‡Π° β„–10

РСшСниС. Π‘Π½Π°Ρ‡Π°Π»Π° составим уравнСния двиТСния снаряда Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅, Π½Π°ΠΏΡ€Π°Π²ΠΈΠ² оси, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ΅ (см. рис. 88), для этого ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ускорСния:
ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΡ вмСсто ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ ΠΈΡ… Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Π΅ значСния, ΡƒΠ²ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ C1 ΠΈ C2 Ρ€Π°Π²Π½Ρ‹ проСкциям Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ скорости:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ ΠΈΡ… Π² уравнСния, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ для ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ скорости:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

РаздСляя ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ ΠΈ интСгрируя, Π½Π°ΠΉΠ΄Π΅ΠΌ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

ΠŸΡ€ΠΈ t = 0 ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ снаряда Π±Ρ‹Π»ΠΈ: Ρ… =0, Ρƒ = 0. ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΡ эти Π΄Π°Π½Π½Ρ‹Π΅, Π½Π°ΠΉΠ΄Π΅ΠΌ, Ρ‡Ρ‚ΠΎ C3 = O ΠΈ C4 = O. ЗначСния cos 55Β° ΠΈ sin 55Β° Π½Π°ΠΉΠ΄Π΅ΠΌ Π² тригономСтричСских Ρ‚Π°Π±Π»ΠΈΡ†Π°Ρ…. УравнСния двиТСния снаряда ΠΏΡ€ΠΈΠΌΡƒΡ‚ Π²ΠΈΠ΄:

ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΠΎ уравнСниям двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΅Π΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ

Π”Π°Π»Π΅Π΅ поступим, ΠΊΠ°ΠΊ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ΠΈ β„– 42: приравняв Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π½ΡƒΠ»ΡŽ, Π½Π°ΠΉΠ΄Π΅ΠΌ врСмя подъСма снаряда (t= 133,7 сСк); подставляя это Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ t Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния ΠΏΠΎ оси ΠžΡƒ, Π½Π°ΠΉΠ΄Π΅ΠΌ Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ высоту обстрСла (h = 87 636 ΠΌ); удваивая врСмя /, Π½Π°ΠΉΠ΄Π΅ΠΌ врСмя ΠΏΠΎΠ»Π΅Ρ‚Π° снаряда (t = 267,4 сСк); подставляя это Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅- Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния ΠΏΠΎ оси ΠžΡ…, Π½Π°ΠΉΠ΄Π΅ΠΌ Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π΄Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ обстрСла (l = 245 393 ΠΌ).
ΠžΡ‚Π²Π΅Ρ‚. l = 245 ΠΊΠΌ; h = 87,5ΞΊΠΌ.

ΠŸΡ€ΠΈ ΠΊΠΎΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π»ΡŽΠ±Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² с сайта evkova.org ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Π° активная ссылка Π½Π° сайт www.evkova.org

Π‘Π°ΠΉΡ‚ создан ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²ΠΎΠΌ ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»Π΅ΠΉ Π½Π° нСкоммСрчСской основС для Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ образования ΠΌΠΎΠ»ΠΎΠ΄Π΅ΠΆΠΈ

Π‘Π°ΠΉΡ‚ ΠΏΠΈΡˆΠ΅Ρ‚ΡΡ, поддСрТиваСтся ΠΈ управляСтся ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²ΠΎΠΌ ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»Π΅ΠΉ

Whatsapp ΠΈ Π»ΠΎΠ³ΠΎΡ‚ΠΈΠΏ whatsapp ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‚ΠΎΠ²Π°Ρ€Π½Ρ‹ΠΌΠΈ Π·Π½Π°ΠΊΠ°ΠΌΠΈ ΠΊΠΎΡ€ΠΏΠΎΡ€Π°Ρ†ΠΈΠΈ WhatsApp LLC.

CΠ°ΠΉΡ‚ носит ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ ΠΈ Π½ΠΈ ΠΏΡ€ΠΈ ΠΊΠ°ΠΊΠΈΡ… условиях Π½Π΅ являСтся ΠΏΡƒΠ±Π»ΠΈΡ‡Π½ΠΎΠΉ ΠΎΡ„Π΅Ρ€Ρ‚ΠΎΠΉ, которая опрСдСляСтся полоТСниями ΡΡ‚Π°Ρ‚ΡŒΠΈ 437 ГраТданского кодСкса Π Π€. Анна Π•Π²ΠΊΠΎΠ²Π° Π½Π΅ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½ΠΈΠΊΠ°ΠΊΠΈΡ… услуг.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *