как посчитать площадь фигуры неправильной формы
Площадь фигур
Площадь фигуры является суммарной числовой характеристикой всех единичных квадратных элементов плоскости. В зависимости от размера фигур стороны квадрата единичного элемента могут быть равны 1 мм, см, м, дюйму, км и пр. S фигур могут измеряться в следующих единицах измерения: мм2, см2, м2, гектарах, квадратных километрах и пр.
Вычислить, найти площадь геометрических фигур
Онлайн Расчеты и формулы площади для плоских фигур | |
Площадь треугольника калькулятор нахождения площади треугольников | Площадь прямоугольного треугольника онлайн формула площади прямоугольного треугольника |
Площадь равнобедренного треугольника найти площади равнобедренных треугольников | Площадь равностороннего треугольника вычислить площадь равностороннего треугольника |
Площадь треугольника по формуле Герона площадь Герона, формула | Площадь квадрата чему равна площадь квадрата |
Площадь прямоугольника как найти чему равна площадь прямоугольника | Площадь круга онлайн калькулятор площади круга через радиуса |
Площадь ромба как найти площадь ромба через диагонали и т.д. | Площадь параллелограмма онлайн калькулятор для нахождения площади параллелограмма |
Площадь трапеции площадь прямоугольной и равнобедренной трапеции | Площадь эллипса формула площади эллипса онлайн |
Площадь кольца как вычислить площадь кольца онлайн | Площадь четырехугольника чему равна площадь четырехугольника, формула |
Площадь сектора кольца подсчитать площади сектора кольца | Площадь сектора круга получить площадь сектора круга |
Площадь сегмента круга решить площадь сегмента круга | |
Онлайн Расчеты и формулы площади для объемных фигур | |
Площадь шара калькулятор нахождения площадь поверхности сферы или шара | Площадь куба как найти чему равна площадь поверхности куба |
Площадь цилиндра калькулятор для нахождения площади поверхности и основания цилиндра | Площадь пирамиды формулы расчета площади боковой поверхности и основания пирамиды |
Площадь параллелепипеда калькулятор площади параллелепипеда прямоугольного и др. | Площадь конуса нахождение площади поверхностей конуса |
Площадь усеченного конуса калькулятор нахождения площади поверхности усеченного конуса | Площадь тетраэдра площадь поверхности и грани тетраэдра |
Площадь призмы калькулятор нахождения площади поверхности и боковой площади призмы |
Площадь фигуры сложной формы может составляться из различных элементарных фигур: треугольников, квадратов, прямоугольников и пр. Общая площадь будет высчитываться путем суммирования площадей составляющих компонент.
Набор онлайн-калькуляторов страницы дает возможность оперативного вычисления не только S плоских фигур (квадрата, прямоугольника, круга, ромба, эллипса), но и площадей объемных фигур (куба, призмы, конуса, цилиндра, сферы, тетраэдра и пр.), являющихся совокупностью нескольких плоскостей.
Вычисление площадей фигур востребовано для решения различных задач:
— строительных;
— кадастровых;
— инженерных и пр.
Государство осуществляет кадастровый учет земельных участков, основным учитываемым параметром которых является площадь. Специалистами БТИ фиксируется общая и полезная жилая площадь квартир. В быту иногда нужно вычислять площадь ковра, натяжного потолка, площадь дачного участка и пр.
TL; DR (слишком долго; не читал)
Соберите свои инструменты
Соберите формулы для форм, с которыми вы уже знакомы. Наиболее распространенные формы и их формулы включают в себя:
Подразделить неправильную форму
Используйте свое воображение, чтобы разделить имеющуюся неправильную форму на более привычные формы. Иногда рисуя форму, затем добавляя линии для подразделений, вы можете визуализировать ее и отслеживать соответствующие измерения для каждого измерения. Например, представьте, что вам нужно найти область пятигранной формы, которая не является шестиугольником, но имеет три перпендикулярные стороны, противоположные «точке». Немного подумав, вы можете разделить это на прямоугольник, который упирается в треугольник, с треугольником, образующим «точку» фигуры.
Найти размеры подразделенных фигур
Вернитесь к формулам площади, чтобы узнать размеры, необходимые для расчета площади каждой подразделенной фигуры. В этом случае вам понадобится базовая и вертикальная высота треугольника, а также длина и ширина (или две соседние стороны) прямоугольника. Если вы работаете над математической задачей в школе, вы, вероятно, получите хотя бы некоторые из этих измерений и, возможно, потребуется использовать некоторую базовую алгебру или геометрию, чтобы найти пропущенные измерения. Если вы работаете в реальном мире, вы можете заполнить некоторые измерения физическими измерениями.
Рассчитать площадь каждой подразделенной формы
Заполните размеры в формуле площади для каждой подразделенной фигуры. Например, если треугольник имеет основание 6 дюймов и высоту по вертикали 3 дюйма, его формула площади:
1/2 ( b × h ) = 1/2 (6 дюймов × 3 дюйма) = 1/2 (18 дюймов 2 ) = 9 дюймов 2
Если прямоугольник имеет длину 6 дюймов (что также является стороной, составляющей основание треугольника) и высоту 4 дюйма, его формула площади:
l × w = 6 в × 4 в = 24 в 2
подсказки
Всего областей подразделяемых форм
9 в 2 + 24 в 2 = 33 в 2
подсказки
Вместо того, чтобы делить неправильную форму на что-то знакомое, можете ли вы добавить кусок, чтобы сделать его чем-то знакомым? Например, представьте, что ваша фигура выглядит как квадрат, но с одним углом, отрезанным под углом. Можете ли вы «добавить» треугольник в этот отрезанный угол, чтобы превратить его в аккуратный квадрат? Если да, вы можете рассчитать площадь всего квадрата, а затем вычесть площадь треугольника, который вы только что добавили. В результате вы получите площадь неправильной формы, с которой вы начали.
Как рассчитать площадь неправильной трапеции
Обычно легче измерить площадь правильных форм. Тем не менее, неправильные формы, такие как неправильная трапеция (или неправильная трапеция), являются общими и должны быть рассчитаны. Существуют нерегулярные калькуляторы трапециевидной площади и формула трапециевидной площади, которая делает процесс простым.
Как рассчитать длину овальной формы
Овальная форма всем знакома. Правильный овал, симметричный как по длине, так и по ширине, называется эллипсом. Эллипсы и овальные размеры важны в астрономии, потому что орбиты небесных тел, таких как планеты, являются эллиптическими.
Площадь неправильного четырехугольника
Узнайте чему равна площадь неправильного четырехугольника с помощью онлайн-калькулятора или по формулам — расчет по сторонам, диагоналям, углам.
С помощью данного калькулятора вы можете легко и быстро рассчитать площадь неправильного четырехугольника в условных единицах. Инструмент позволяет определить площадь выпуклой фигуры тремя разными способами: по сторонам, сторонам и углам, диагоналям и углам (первые два вычисления выполняются с ограничениями). Теоретическое обоснование расчета и формулы представлены ниже. Чтобы получить результат — выберите наиболее подходящий метод расчета, заполните поля калькулятора и нажмите кнопку «Рассчитать».
Как найти площадь неправильного четырехугольника?
Первый способ расчета основан на формуле Брахмагупты (рис. 1), которая выражает площадь вписанного в окружность четырёхугольника как функцию длин его сторон. Эта формула является обобщением формулы Герона для площади треугольника.
где P — полупериметр, a, b, c, d — длины сторон четырехугольника.
Вторая формула также основывается на формуле Брахмагупты, но на ее расширенной версии (рис. 2), когда необходимо найти площадь произвольного четырехугольника.
где P — полупериметр, a, b, c, d — длины сторон, θ — полусумма противоположных углов четырёхугольника.
В формулах Брахмагупты есть одно ограничение — любая из сторон не может превышать полупериметр. В противном случае стороны четырехугольника не замкнутся. Математически, в формуле появится отрицательное значение.
Последняя формула позволяет найти площадь не самопересекающейся фигуры по проведенным диагоналям и синусу угла между ними (рис. 3). По сути, формула основывается на сумме площадей треугольников, которые образуются диагоналями четырехугольника.
Как найти площадь фигуры
Вычисление площади по сторонам
Если же границы участка можно измерить вручную, тогда нам пригодится второй способ. Здесь нам нужны будут лишь длины всех четырех сторон (a,b,c,d). Сложив их вместе и поделив полученное число пополам, мы получим полупериметр нашего четырехугольника (p):
Далее используем эту величину, вычислив корень из перемножения её с её же разностями со всеми четырьмя сторонами:
Для верности конечно лучше сочетать оба эти способа. Результаты вычислений должны совпасть или быть очень близкими. Однако каждый из них достаточно надёжен, если пользоваться точно рассчитанными величинами.
Наибольшая трудность здесь очевидно в выяснении исходных данных. Впрочем, их можно перепроверить, запросив официальные земельные документы у властей или поискав на официальных административных ресурсах. Стоит учитывать, что там площадь участков будет отмечена в гектарах.
Онлайн калькулятор расчета площади земельного участка. Калькулятор расчета площади земельного участка по длине его четырех сторон. Введите длину сторон земельного участка и рассчитайте его площадь онлайн.
Связанные Калькуляторы
Всем привет помогите рассчитать площадь участка земли по километражу это надо умножать на 1000 м чтобы получить в километрах
спасибо, очень помог при расчете на кривых участков
неправильно высчитывается площадь этим калькулятором. Меньше процента на 2.
зная только 4 стороны невозможно правильно определить площадьэто работает, только если участок примерно вписывается углами в окружностьчтобы правильно посчитать, нужно ещё два противолежащих угла знать. для этого нужны дирекционные углы из кадастрового плана
Как измерить сотку земли
Еще не так давно у большинства дачных участков размеры были одинаковыми, и за расчет принималась известная всем сотка. На сегодняшний день у многих владельцев в собственности нестандартные земельные наделы, в результате чего люди задаются вопросом как измерить сотку своего участка?
Существует множество способов узнать площадь земельного участка, это могут быть колышки, измерение сотки земли шагами, а также применение специальных средств таких как рулетка, дальномер, техномер и тому подобные современные технологии.
Автор статьи Харлов Андрей Юрьевич — директор ООО «Азия Стриж» — производство самозатачиваещегося садового инструмента Стриж с 1992 года. Перейти в каталог садового инструмента
Параллелограмм и ромб
Параллелограмм — четырехугольник, противоположные стороны которого попарно параллельны. Определение ромба звучит точно также, поэтому мы их объединили и расскажем про общие формулы расчета площади фигуры.
1. S = a * h, где a — сторона, h — высота.
2. S = a * b * sinα, где a и b — две стороны, sinα — синус угла между ними.
Чтобы ребенок еще лучше учился в школе, запишите его на уроки математики. Лето — прекрасное время, чтобы заниматься ей с удовольствием, в комфортном темпе, без контрольных и оценок за четверть, валяясь дома на полу или за городом на травке.
Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой. Наши преподаватели понятно объяснят что угодно — от дробей до синусов — и ответят на вопросы, которые бывает неловко задать перед всем классом.
Вычисление площади по диагоналям и острому углу
Этот способ будет удобен в том случае, если участок слишком велик или непроходим для непосредственных измерений на местности, но имеется его вид сверху. Изображение на карте, на плане или даже фото с квадрокоптера.
Если вы хотите узнать, как решить именно Вашу проблему, обращайтесь через форму онлайн-консультанта или звоните по телефонам:
Разумеется, для наиболее точных вычислений нужно как можно чётче выяснить масштаб. После этого нам понадобится измерить обе диагонали четырёхугольника (d1 и d2) и острый угол между ними (α).
Далее пользуемся формулой:
Вам необходимо сделать межевание своего участка в СНТ? В нашей статье есть перечень необходимых документов, а также правильный порядок действий.
В российском законодательстве есть несколько форм права владения землей. Подробно о каждом из них написано здесь.
Если вы хотите узнать, как решить именно Вашу проблему, обращайтесь через форму онлайн-консультанта или звоните по телефонам:
Определение площади сложной фигуры с помощью теории вероятностей
Да мало ли зачем. Например, возникла необходимость определить площадь территории на карте.
Конечно, можно посмотреть в справочнике или поискать в интернете, но иногда и территории бывают нестандартными — допустим, вы озаботились проблемами лесов в пойме Амазонки и хотите ежемесячно измерять площадь зелёных пятен на фотографиях со спутника.
Если вы ботаник (в хорошем смысле слова), то вам может понадобиться измерить площадь листовой поверхности разных сортов одного растения. Или, к примеру, более прозаичная задача — нужно зашпатлевать кусок стены, а банки шпатлёвки хватает только на 1 кв. м. — нужно выяснить, покупать одну банку или раскошелиться на две.
В чём сложность нахождения площади?
Конечно, если фигура представляет собой прямоугольник, круг или, что хуже, эллипс, то проблема решается с помощью Google и калькулятора. Но где бы найти формулу, да попроще, для нахождения площади, скажем, такого рисунка?
Теория вероятностей, Ваш выход!
Сразу оговорюсь, что теория вероятностей по своей сути не подразумевает точного решения задач. Так будет и в этом случае — если вам нужна космическая точность, то предлагаю копать в сторону методов имитационного моделирования. Если же погрешность в пределах 2-5% вас вполне устраивает, то будет достаточно того же калькулятора, базовых навыков программирования и умения считать до ста.
Суть метода
Суть метода проста до банальности. Допустим, мы пасмурным деньком выложили капустный листочек (см. ремарку про биолога выше) на прямоугольный поддон, а поддон выставили под накрапывающий дождик.
А потом засекли определённое время (к примеру, пять минут) и посчитали, сколько капелек упало на поддон, а сколько непосредственно на лист.
Если принять во внимание, что дождь обычно капает равномерно, то получается простая пропорция — лист во столько раз меньше поддона, во сколько раз на него упало меньше капель дождя, чем на весь поддон
Возвращаемся к нашей фигуре
Итак, как же определить площадь той розовой пятерни? Да очень просто — заключить фигуру в прямоугольные границы и проставить случайным образом много точек. Чем больше, тем лучше (в соответствии с законом больших чисел). А потом подсчитать количество точек, попавших на фигуру.
Я намеренно не обсуждаю вопросы реализации такого алгоритма, потому что вариантов масса. Можно просто закрыть глаза и наугад тыкать шариковой ручкой, а можно действовать более научно — с помощью языков программирования.
Например, код на PHP занял у меня не больше 15 строчек, а в результате получилось вот что: Точки общим числом 300, разумеется, проставлены с помощью генератора случайных чисел.
Для удобства подсчета точек я разбил изображение на 36 секторов — теперь нужно подсчитать количество точек, попавших на изображение, в каждом секторе, а результаты сложить.
Сведём данные в таблицу (ячейка таблицы соответствует сектору на картинке):
4 | 8 | 4 | |||
7 | 5 | 6 | 4 | ||
3 | 6 | 13 | 7 | 8 | 5 |
1 | 10 | 10 | 13 | 7 | 2 |
2 | 3 | 7 | 10 | 2 | |
2 | 5 | 3 |
Теперь у нас есть все данные для того, чтобы вычислить площадь розовой пятерни: площадь описанного прямоугольника — 20 см х 20 см = 400 кв. см; количество точек в прямоугольнике — 300; количество точек внутри фигуры (сумма значений из таблицы) — 157;
площадь фигуры – 209,33 кв. см.
И насколько это точно?
Действительно, осталось определиться с точностью данного метода. Конечно, всё зависит от количества точек, и здесь нужно соблюдать золотую середину — десяти для нашего примера было бы явно недостаточно, а от тысячи слишком рябило бы в глазах. Поэтому попробуем определить погрешность для трёхсот точек и описанного квадрата со стороной 20 см.
Для этого возьмём фигуру, площадь которой нам известна заранее.
Например, такую: Проставляем точки: Результаты заносим в таблицу:
6 | 11 | 8 | 5 | ||
9 | 15 | 8 | 5 | 13 | 2 |
11 | 8 | 5 | 14 | 13 | 5 |
10 | 11 | 8 | 8 | 4 | 4 |
2 | 14 | 9 | 10 | 4 | 1 |
3 | 5 | 6 |
Рассчитываем площадь фигуры: площадь описанного прямоугольника — 20 см х 20 см = 400 кв. см; количество точек в прямоугольнике — 300; количество точек внутри фигуры (сумма значений из таблицы) — 237;
площадь фигуры – 316 кв. см.
Нетрудно посчитать, что реальная площадь круга с радиусом 10 см составляет 314,16 кв. см. Таким образом, погрешность метода составила 0,59%, чего в большинстве случаев достаточно для прикладного использования.
По диагонали и стороне
Должна быть известна диагональ и любая из сторон. Действия:
Пример. Сторона прямоугольника равна 3 см, а диагональ – 5 см. Найдите площадь.
Примеры решения
Задачи на нахождение площади применяются в нескольких дисциплинах. В геометрии применяются различные комбинации, при которых известны некоторые величины:
Для расчета расходных материалов и площади поперечного сечения проводника можно всегда измерить стороны прямоугольника. Существует два способа нахождения: автоматизированный и ручной. В первом случае используется специализированное программное обеспечение. Однако вовсе не обязательно применять сложные алгоритмы и программные модули, поскольку формула является очень простой. Для расчета специалисты рекомендуют применять онлайн-калькулятор.
При ручном режиме расчета нужно подставлять значения в формулу. После этого выполнять вычисления. Возможна и оптимизация процесса вычисления. Для этой цели рекомендуется использовать Excel. Приложение входит в состав стандартного офисного пакета MS Office.
Геометрия на плоскости
Задача сводится к тому, что необходимо высчитать S, зная размеры сторон (a = 25 и b = 10). В этом случае следует воспользоваться базовой формулой: S = a * b = 25 * 10 = 250 (ед 2 ). В ответе указывается условная единица измерения, поскольку явная не указана в условии задачи.
Еще один вариант задания немного сложнее предыдущего. Он имеет следующее условие: одна из сторон прямоугольника равна 6 м и диагональ 10 м. Нужно найти площадь прямоугольника. Формулой в этом случае является теорема Пифагора. Треугольник, который образуется при проведении диагонали, считается прямоугольный (неравносторонний, а разносторонний). Решается задача следующим образом:
Находится неизвестная сторона: b =(d 2 — a 2 )^(1/2) = (100 — 36)^(1/2) = 8 (м).
Площадь (произведение сторон): S = 6 * 8 = 48 (м 2 ).
Можно использовать двойную формулу Герона, однако метод усложняет вычисления. Для сравнения скорости и объема вычислений следует решить задачу вторым способом:
Значение площади будет вычисляться таким образом: S = 2 * ^(1/2) = 2 * 24 = 48 (м 2 ).
Второй способ считается неправильным, поскольку необходимо во всех задачах оптимизировать вычисления. Сложным типом задачи, кроме интегрирования, считается нахождение площади, когда неизвестны стороны, а известна только диагональ (10). Известно также, что одна из сторон больше другой на 3 метра. В этом случае надо выражать одну сторону через другую. Алгоритм решения следующий:
Раскрыть скобки: x 2 — 3x — 10 = 0.
Нахождение дискриминанта: D = b 2 — 4* a * c = 9 — (4 * 10) 2 ). Однако берется не исходное значение, а приближенное. Его нужно округлять только в большую сторону, т. е. править 3,75 на значение 4. Следует руководствоваться таким правилом: результат округляется в большую сторону.
Как измерить сотку земли, если площадь дана в других единицах измерения
Очень часто на документации предлагаемых для продажи земельных наделов стоят цифры площади в гектарах, акрах метрах или иных обозначениях, возникает вопрос, как измерить площадь участка в сотках?
В Российской Федерации площади участков земли измеряются следующим образом:
Принятое в настоящее время обозначение гектара образуется при добавлении частички «гекто» в единицы измерения площади ар.
Под понятием ара понимается площадь фигуры квадрат имеющая сторону в 10 метров, возникает вопрос, как измерить площадь участка в сотках если она приводится в арах? Нет ничего проще, вот простой пример.
Земельный надел 4 ара, а значит 1 ар равняется 10 х 10 метров. В этом случае 40 х 40 = 400 квадратных метров или 4 сотки.
На территории некоторых стран основной мерой измерения площади служит акр. Задумав приобрести участок за границей, нелишним будет ознакомиться, как измерить сотку земли в более привычных метрических системах.
В одном акре 4840 квадратных ярдов, что равняется 4046, 86 квадратных метров. Зная этот расчет, не составит труда совершить измерение участка в сотках.
Средние земельные участки для семей, имеющих нормальный доход располагаются на площади в 10 соток, что в итоге равняется сотне метров в квадрате. На таком земельном наделе, можно проживать вполне комфортно. Исходя из этого принципа, земельные наделы такой площади являются одними из самых востребованных. Здесь можно возвести дом, разбить садовый участок и всячески наслаждаться единением с природой.
В статье было рассказано о наиболее популярных способах измерения участков, как перевести одну единицу измерения в другую, какие подручные средства можно использовать, и как обойтись без них в случае крайней необходимости.
Калькулятор расчета площади земельного участка неправильной формы
Инструкция для калькулятора расчета площади неправильного земельного участка
Данный онлайн калькулятор помогает произвести расчет, определение и вычисление площади земельного участка в онлайн режиме. Представленная программа способна правильно подсказать, как выполнить расчет площади земельных участков неправильной формы.
Указываем все данные в метрах
A B, D A, C D, B C— Размер каждой стороны делянки.
Согласно введен данным, наша программа в онлайн режиме выполнить расчет и определить, площадь земельных угодий в квадратных метрах, сотках, акрах и гектарах.
Методика определения размеров участка ручным методом
Чтобы правильно выполнить расчет площади делянок, не нужно использовать сложные инструменты. Мы берем деревянные колышки или металлические прутья и устанавливаем их в углах нашего участка. Далее при помощи измерительной рулетки определяем ширину и длину делянки. Как правило, достаточно выполнить замер одной ширины и одной длины, для прямоугольных или равносторонних участков. Для примера, у нас получились следующие данные: ширина – 20 метров и длина – 40 метров.
После того, как мы определили нашу площадь, мы можем определить количество соток на земельном участке. Согласно общепринятым данным, в одной сотке – 100 м². Далее при помощи простой арифметики, мы разделим наш параметр S на 100. Готовый результат и станет равен размеру делянки в сотках. Для нашего примера, этот результат – 8. Таким образом, получаем, что площадь участка составляет восемь соток.
В том случае, когда территория угодий очень большая, то лучше всего выполнять все измерения в других единицах – в гектарах. Согласно общепринятым единицам измерения – 1 Га = 100 соток. К примеру, если наша земельная делянка согласно полученным измерениям составляем 10 000 м², то в этом случае его площадь равна 1 гектару или 100 соткам.
Если Ваш участок неправильной формы, то в этом случае количество соток напрямую зависит от площади. Именно по этой причине при помощи онлайн калькулятора Вы сможете правильно рассчитать параметр S делянки, и после этого разделив полученный результат на 100. Таким образом, Вы получите расчеты в сотках. Такой метод предоставляет возможность измерять делянки сложных форм, что весьма удобно.
Расчет площади земельных участков базируется на классических расчетах, которые выполняются согласно общепринятым геодезическим формулам.
Всего доступно несколько методов для расчета площади земельных угодий – механический (рассчитывается по плану при помощи мерных палеток), графический (определяется по проекту) и аналитический (при помощи формулы площади по измеренным линиям границ).
На сегодняшний день самым точным способом заслуженно считается – аналитический. Используя данный метод, ошибки при расчетах, как правило, появляются из-за погрешностей на местности измеренных линий. Данный способ является также и достаточно сложным, если границы криволинейные или количество углом на делянке больше десяти.
Немного проще по расчетам является графическим способ. Его лучше всего использовать в том случае, когда границы участка представлены в виде ломанной линии, с небольшим количеством поворотов.
И самый доступный и простой способ, и наиболее популярный, но и в тоже время самой большой погрешностью – механический способ. Используя данный метод, Вы сможете легко и быстро выполнить расчет площади земельных угодий простой или сложной формы.
Среди серьезных недостатков механического или графического способа, выделяют следующее, кроме погрешностей при измерении участка, при расчетах добавляется погрешность из-за деформации бумаги или погрешность при составлении планов.
Обозначение площади
Площадь — это одна из характеристик замкнутой геометрической фигуры, которая дает нам информацию о ее размере. S (square) — знак площади.
Если параметры фигуры переданы в разных единицах длины, мы не сможем решить ни одну задачу. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.
Популярные единицы измерения
Круг — это когда множество точек на плоскости удалены от центра на равном радиусу расстоянии. Радиусом принято называть прямую линию, соединяющую центр с любой точкой окружности.
2. S = d 2 : 4 * π, где d — это диаметр.
3. S = L 2 : 4 * π, где L — это длина окружности.
Площадь комнаты в квадратных метрах
Посчитать несложно, требуется только вспомнить простейшие формулы а также провести измерения. Для этого нужны будут:
Набор инструментов нехитрый, найдется в каждом хозяйстве. Проще измерения проводить с помощником, но можно справиться и самостоятельно.
Для начала надо измерить длину стен. Делать это желательно вдоль стен, но если все они заставлены тяжелой мебелью, можно проводить измерения и посередине. Только в этом случае следите чтобы лента рулетки лежала вдоль стен, а не наискосок — погрешность измерений будет меньше.
Прямоугольная комната
Если помещение правильной формы, без выступающих частей, вычислить площадь комнаты просто. Измеряете длину и ширину, записываете на бумажке. Цифры пишите в метрах, после запятой ставите сантиметры. Например, длина 4,35 м (430 см), ширина 3,25 м (325 см).
Найденные цифры перемножаем, получаем площадь комнаты в квадратных метрах. Если обратимся к нашему примеру, то получится следующее: 4,35 м * 3,25 м = 14,1375 кв. м. В данной величине оставляют обычно две цифры после запятой, значит округляем. Итого, рассчитанная квадратура комнаты 14,14 квадратных метров.
Помещение неправильной формы
Если надо высчитать площадь комнаты неправильной формы, ее разбивают на простые фигуры — квадраты, прямоугольники, треугольники. Потом измеряют все нужные размеры, производят расчеты по известным формулам (есть в таблице чуть ниже).
Перед тем как посчитать площадь комнаты, тоже проводим изменения. Только в этом случае цифр будет не две, а четыре: добавится еще длина и ширина выступа. Габариты обоих кусков считаются отдельно.
Один из примеров — на фото. Так как и то, и другое — прямоугольник, площадь считается по той же формуле: длину умножаем на ширину. Найденную цифру надо отнять или прибавить к размеру помещения — в зависимости от конфигурации.
Покажем на этом примере как посчитать площадь комнаты с выступом (изображена на фото выше):
Еще бывают помещения со скошенными стенами. В этом случае разбиваем ее так, чтобы получились прямоугольники и треугольник (как на рисунке ниже). Как видите, для данного случая требуется иметь пять размеров. Разбить можно было по-другому, поставив вертикальную, а не горизонтальную черту
Это не важно. Просто требуется набор простых фигур, а способ их выделения произвольный
В этом случае порядок вычислений такой:
Планировка помещений может быть очень разнообразной, но общий принцип вы поняли: делим на простые фигуры, измеряем все требуемые размеры, высчитываем квадратуру каждого фрагмента, потом все складываем.
Еще одно важное замечание: площадь комнаты, пола и потолка — это все одинаковые величины. Отличия могут быть если есть какие-то полу-колоны, не доходящие до потолка
Тогда из общей квадратуры вычитается квадратура этих элементов. В результате получаем площадь пола.
Совет по решению задачи, для которой многоугольник изображен на бумаге в клетку
Чаще всего озадачивает то, что в данных имеется только размер клеточки. Но оказывается, что больше сведений не нужно. Рекомендацией к решению такой задачи является разбивание фигуры на множество треугольников и прямоугольников. Их площади довольно просто сосчитать по длинам сторон, которые потом легко сложить.
Но часто есть более простой подход. Он заключается в том, чтобы дорисовать фигуру до прямоугольника и вычислить значение его площади. Потом сосчитать площади тех элементов, которые оказались лишними. Вычесть их из общего значения. Этот вариант порой предполагает несколько меньшее число действий.
Какие их виды существуют?
Многоугольник, у которого больше четырех углов, может быть выпуклым или вогнутым. Отличие последнего в том, что некоторые его вершины могут лежать по разные стороны от прямой, проведенной через произвольную сторону многоугольника. В выпуклом всегда все вершины лежат с одной стороны от такой прямой.
В школьном курсе геометрии большая часть времени уделяется именно выпуклым фигурам. Поэтому в задачах требуется узнать площадь выпуклого многоугольника. Тогда существует формула через радиус описанной окружности, которая позволяет найти искомую величину для любой фигуры. В других случаях однозначного решения не существует. Для треугольника формула одна, а для квадрата или трапеции совершенно другие. В ситуациях, когда фигура неправильная или вершин очень много, принято разделять их на простые и знакомые.
Площадь частных случаев четырехугольников
Для вычисления частных случаев четырехугольников можно воспользоваться формулами и калькуляторами, приведенными в других статьях сайта:
Определения
Четырехугольник – это геометрическая плоская фигура, образованная четырьмя последовательно соединенными отрезками.
Площадь – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой.
Площадь четырехугольника — это численная характеристика, характеризующая размер плоскости, ограниченной геометрической фигурой, образованной четырьмя последовательно соединенными отрезками.
Вычислить, найти площадь геометрических фигур
Онлайн Расчеты и формулы площади для плоских фигур | |
Площадь треугольника калькулятор нахождения площади треугольников | Площадь прямоугольного треугольника онлайн формула площади прямоугольного треугольника |
Площадь равнобедренного треугольника найти площади равнобедренных треугольников | Площадь равностороннего треугольника вычислить площадь равностороннего треугольника |
Площадь треугольника по формуле Герона площадь Герона, формула | Площадь квадрата чему равна площадь квадрата |
Площадь прямоугольника как найти чему равна площадь прямоугольника | Площадь круга онлайн калькулятор площади круга через радиуса |
Площадь ромба как найти площадь ромба через диагонали и т.д. | Площадь параллелограмма онлайн калькулятор для нахождения площади параллелограмма |
Площадь трапеции площадь прямоугольной и равнобедренной трапеции | Площадь эллипса формула площади эллипса онлайн |
Площадь кольца как вычислить площадь кольца онлайн | Площадь четырехугольника чему равна площадь четырехугольника, формула |
Площадь сектора кольца подсчитать площади сектора кольца | Площадь сектора круга получить площадь сектора круга |
Площадь сегмента круга решить площадь сегмента круга | |
Онлайн Расчеты и формулы площади для объемных фигур | |
Площадь шара калькулятор нахождения площадь поверхности сферы или шара | Площадь куба как найти чему равна площадь поверхности куба |
Площадь цилиндра калькулятор для нахождения площади поверхности и основания цилиндра | Площадь пирамиды формулы расчета площади боковой поверхности и основания пирамиды |
Площадь параллелепипеда калькулятор площади параллелепипеда прямоугольного и др. | Площадь конуса нахождение площади поверхностей конуса |
Площадь усеченного конуса калькулятор нахождения площади поверхности усеченного конуса | Площадь тетраэдра площадь поверхности и грани тетраэдра |
Площадь призмы калькулятор нахождения площади поверхности и боковой площади призмы |
Площадь фигуры сложной формы может составляться из различных элементарных фигур: треугольников, квадратов, прямоугольников и пр. Общая площадь будет высчитываться путем суммирования площадей составляющих компонент.
Набор онлайн-калькуляторов страницы дает возможность оперативного вычисления не только S плоских фигур (квадрата, прямоугольника, круга, ромба, эллипса), но и площадей объемных фигур (куба, призмы, конуса, цилиндра, сферы, тетраэдра и пр.), являющихся совокупностью нескольких плоскостей.
Вычисление площадей фигур востребовано для решения различных задач: — строительных; — кадастровых; — инженерных и пр.
Государство осуществляет кадастровый учет земельных участков, основным учитываемым параметром которых является площадь. Специалистами БТИ фиксируется общая и полезная жилая площадь квартир. В быту иногда нужно вычислять площадь ковра, натяжного потолка, площадь дачного участка и пр.
Как найти площадь неправильной фигуры | Сделай все сам
В школьном курсе геометрии ученики в основном считают площади положительных многоугольников. Между тем, для решения множества фактических задач неоднократно доводится иметь дело с неправильными геометрическими фигурами.
С этой задачей человек сталкивается и при определении размеров дачного участка либо придомовой территории, и при расчете числа ткани для шитья, и еще во многих случаях.
Высчитать площадь неправильной фигуры дозволено несколькими методами.
Инструкция
1. Разглядите геометрическую фигуру и определите, какие ее параметры вам вестимы. Это могут быть длины сторон либо углы. В зависимости от заданных параметров и выберите метод определения площади. Скажем, поделите ее на несколько фигур, формулы вычисления площади которых вы знаете.
Один из самых распространенных способов — провести диагонали из одного угла ко каждым остальным вершинам. В этом случае вам необходимо знать формулу вычисления площади произвольного треугольника. Но никто не воспрещает поделить заданную фигуру и на другие многоугольники.
Скажем, при расчете площади пола в комнате с нишей комфортнее поделить неправильную фигуру на два прямоугольника либо квадрата.
2. Для определения площади не слишком огромный детали дозволено воспользуйтесь палеткой. Ее дозволено сделать самому. Отрежьте прямоугольный кусок всякого прозрачного пластика.
Поделите его на квадраты, площадь которых вам вестима — скажем, 1х1 либо 0,5х0,5 см. Линейка и угольник обязаны быть точными. Наложите палетку на деталь. Сосчитайте полные квадратики, после этого — неполные.
3. С большими площадями дозволено поступить и напротив. Возьмите максимально точный план участка либо придомовой территории. Определите масштаб. Воспользуйтесь одним из предложенных методов. После этого полученное число квадратных сантиметров переведите в надобный масштаб.
Пример задачи
Условие. Координаты вершин заданы такими значениями (0.6; 2.1), (1.8; 3.6), (2.2; 2.3), (3.6; 2.4), (3.1; 0.5). Требуется вычислить площадь многоугольника.
Решение. По формуле, указанной выше, первое слагаемое будет равно (1.8 + 0.6)/2 * (3.6 — 2.1). Здесь нужно просто взять значения для игрека и икса от второй и первой точек. Несложный расчет приведет к результату 1.8.
Подобным образом получаются значения для третьего (0.29), четвертого (-6.365) и пятого слагаемых (2.96). Тогда итоговая площадь равна: 1.8 + (-2.6) + 0.29 + (-6.365) + 2.96 = — 3.915.
Заключение
Теперь вы получили ответ на вопрос, каким образом вычисляется площадь любого помещения. Даже если оно сложное, то ничего страшного, нужно разбить его на простые фигуры. Еще можно использовать онлайн калькулятор, необходимый чтобы рассчитать квадратуру помещения. Он может отлично помогать в некоторых случаях. Кстати, всегда имейте в запасе 5-10% материалов, так как могут быть ошибки в расчете.
Те же онлайн калькуляторы тоже могут работать не правильно. Лучший способ все рассчитать – сделать это самостоятельно.
Игорь Битейкин, управляющий партнёр ЮК «Битейкин и партнёры»