как происходит компенсация реактивной мощности

Для чего нужна компенсация реактивной мощности

как происходит компенсация реактивной мощности. Смотреть фото как происходит компенсация реактивной мощности. Смотреть картинку как происходит компенсация реактивной мощности. Картинка про как происходит компенсация реактивной мощности. Фото как происходит компенсация реактивной мощностиРеактивная мощность и энергия, реактивный ток, компенсация реактивной мощности

Реактивная мощность необходима для создания переменных магнитных полей в индуктивных электроприемниках и не выполняет непосредственно полезной работы. Вместе с тем, реактивная мощность оказывает существенное влияние на такие параметры системы электроснабжения, как потери мощности и электроэнергии, пропускная способность и уровни напряжения в узлах электрической сети.

Потребители реактивной мощности

как происходит компенсация реактивной мощности. Смотреть фото как происходит компенсация реактивной мощности. Смотреть картинку как происходит компенсация реактивной мощности. Картинка про как происходит компенсация реактивной мощности. Фото как происходит компенсация реактивной мощностиМалонагруженные трансформаторы также имеют низкий коэффициент мощности (косинус фи). Поэтому, применять компенсацию реактивной мощности, то результирующий косинус фи энергетической системы будет низок и ток нагрузки электрической, без компенсации реактивной мощности, будет увеличиваться при одной и той же потребляемой из сети активной мощности. Соответственно при компенсации реактивной мощности (применении автоматических конденсаторных установок КРМ) ток потребляемый из сети снижается, в зависимости от косинус фи на 30-50%, соответственно уменьшается нагрев проводящих проводов и старение изоляции.

Структура потребителей реактивной мощности в сетях энергосистем (по установленной активной мощности):

как происходит компенсация реактивной мощности. Смотреть фото как происходит компенсация реактивной мощности. Смотреть картинку как происходит компенсация реактивной мощности. Картинка про как происходит компенсация реактивной мощности. Фото как происходит компенсация реактивной мощности

Прочие преобразователи: переменного тока в постоянный, тока промышленной частоты в ток повышенной или пониженной частоты, печная нагрузка (индукционные печи, дуговые сталеплавильные печи), сварка (сварочные трансформаторы, агрегаты, выпрямители, точечная, контактная).

Так, в трехобмоточном трансформаторе ТДТН-40000/220 при коэффициенте загрузки, равном 0,8, потери реактивной мощности составляют около 12%. На пути от электростанции происходит самое меньшее три трансформации напряжения, и поэтому потери реактивной мощности в трансформаторах и автотрансформаторах достигают больших значений.

Способы снижения потребления реактивной мощности. Компенсация реактивной мощности

Использование конденсаторных установок для компенсации реактивной мощности позволяет:

Компенсация реактивной мощности обеспечивает соблюдение условия баланса реактивной мощности, снижает потери мощности и электроэнергии в сети, а также позволяет осуществлять регулирование напряжения посредством применения компенсирующих устройств.

Значительного экономического эффекта от компенсации реактивной мощности можно достичь при правильном сочетании различных мероприятий, которые должны быть технически и экономически обоснованы.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Способы компенсации реактивной мощности в системах электроснабжения

Реактивной мощностью называется та доля полной мощности, которая идет на поддержание электромагнитных процессов в нагрузках, имеющих индуктивную и емкостную реактивные составляющие.

Реактивная мощность сама по себе не расходуется на выполнение какой-либо полезной работы, в отличие от активной мощности, однако наличие в проводах реактивных токов приводит к их нагреву, то есть к потерям мощности в форме тепла, что вынуждает поставщика электроэнергии все время подавать потребителю повышенную полную мощность. А между тем, в соответствии с приказом Министерства промышленности и энергетики Российской Федерации №267 от 4 октября 2005 года, реактивная мощность отнесена к техническим потерям в электрических сетях.

И хотя без реактивной мощности многие потребители, содержащие ощутимые индуктивные составляющие, не смогли бы работать в принципе, поскольку им необходима реактивная мощность, как часть полной мощности, реактивная мощность зачастую фигурирует как вредная чрезмерная нагрузка по отношению к электрическим сетям.

как происходит компенсация реактивной мощности. Смотреть фото как происходит компенсация реактивной мощности. Смотреть картинку как происходит компенсация реактивной мощности. Картинка про как происходит компенсация реактивной мощности. Фото как происходит компенсация реактивной мощности

Вред от реактивной мощности без компенсации

Но такие системы, которые всегда требуют пополнений за счет соседей, всегда получаются в итоге неэффективными, а ведь их можно легко превратить в эффективные, достаточно создать условия для генерации реактивной мощности прямо на месте, в специально приспособленных компенсирующих устройствах, подобранных для активно-реактивных нагрузок данной энергосистемы.

Дело в том, что реактивную мощность не обязательно генерировать на электростанции генератором, вместо этого ее можно получать в компенсирующей установке (в конденсаторе, синхронном компенсаторе, в статическом источнике реактивной мощности), расположенной на подстанции.

Компенсация реактивной мощности сегодня является не только ответом на вопросы об энергосбережении и о способе оптимизации нагрузок на сеть, но и ценным инструментом влияния на экономику предприятий. Ведь конечная стоимость любой производимой продукции формируется не в последнюю очередь из расходуемой электроэнергии, которая будучи снижена — уменьшит себестоимость продукции. К такому выводу пришли аудиторы и специалисты по энергоресурсам, что побудило многие компании прибегнуть к расчету и установке систем компенсации реактивной мощности.

как происходит компенсация реактивной мощности. Смотреть фото как происходит компенсация реактивной мощности. Смотреть картинку как происходит компенсация реактивной мощности. Картинка про как происходит компенсация реактивной мощности. Фото как происходит компенсация реактивной мощности

Активные потери теперь становятся не более 500 мВт на 1 кВар, при этом движущиеся части у установок отсутствуют, шума нет, а эксплуатационные затраты мизерны. Установить конденсаторы можно в принципе в любой точке электросети, а мощность компенсации подбирается индивидуально. Установка производится в металлических шкафах или в настольном исполнении.

Способы компенсации реактивной мощности в системах электроснабжения

В зависимости от схемы подключения конденсаторов к потребителю, есть несколько видов компенсации: индивидуальная, групповая и централизованная.

Групповая компенсация подразумевает подключение одного общего конденсатора или общей группы конденсаторов сразу к нескольким потребителям со значительными индуктивными составляющими. В этом случае постоянная одновременная работа нескольких потребителей сопряжена с циркуляцией общей реактивной энергии между потребителями и конденсаторами. Линия подводящая электроэнергию к группе потребителей окажется разгружена.

Централизованная компенсация предполагает установку конденсаторов с регулятором в главном или групповом распределительном щите. Регулятор оценивает в режиме реального времени текущее потребление реактивной мощности, и оперативно подключает и отключает необходимое количество конденсаторов. В итоге потребляемая от сети суммарная мощность всегда сводится к минимуму в соответствии с мгновенной величиной требуемой реактивной мощности.

как происходит компенсация реактивной мощности. Смотреть фото как происходит компенсация реактивной мощности. Смотреть картинку как происходит компенсация реактивной мощности. Картинка про как происходит компенсация реактивной мощности. Фото как происходит компенсация реактивной мощности

Каждая установка компенсации реактивной мощности включает в себя несколько ветвей конденсаторов, несколько ступеней, которые формируются индивидуально для той или иной электросети, в зависимости от предполагаемых потребителей реактивной мощности. Типичные размеры ступеней: 5; 10; 20; 30; 50; 7,5; 12,5; 25 кВар.

Для получения больших ступеней (100 и более кВар) — объединяют параллельно несколько небольших. В результате нагрузки на сети снижаются, токи включения и сопровождающие их помехи уменьшаются. В сетях с большим количеством высших гармоник сетевого напряжения, конденсаторы компенсирующих установок защищают дросселями.

Выгоды от компенсации реактивной мощности

Автоматические компенсирующие установки дают ряд преимуществ оборудованной ими сети:

снижают загрузку трансформаторов;

упрощают требования к сечению проводов; позволяют больше нагрузить электрические сети, чем это было возможно без компенсации;

устраняют причины для снижения напряжения сети, даже если потребитель присоединен протяженными проводами;

повышают КПД мобильных генераторов на жидком топливе;

облегчают пуск электродвигателей;

автоматически повышают косинус фи;

устраняют реактивную мощность из линий;

избавляют от перенапряжений;

улучшают контроль за параметрами сетей.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Компенсация реактивной мощности «Три — в одном» или панацея от всех бед?

Предисловие

Сразу оговорюсь, что данная статья имеет обзорный характер и не претендует на научный труд. Поэтому ряд вопросов автор рассматривает поверхностно. Почему «три в одном»? По нашему мнению существуют следующие аспекты компенсации реактивной мощности (РМ):

Мы намеренно опускаем все три аспекта. Это отдельная тема. Написание этой статьи ставило своей целью собрать воедино разрозненную общую информацию о компенсации РМ из различных источников, проанализировать ее и представить на суд читателей ее различные аспекты для более полного понимания сути этого процесса.

Как известно, электроэнергия — это товар, который имеет свое качество. Качество электроэнергии должно соответствовать требованиям ГОСТ 13109-97.

Сегодня потребителя интересуют три вопроса:

Ремарка

По давно проверенной статистике, как только потребитель получает достоверную информацию о том, куда и сколько он тратит киловатт-часов, его суммарное потребление снижается на 10-15%. Это только «сливки» потенциала энергосбережения, которые можно снять без больших затрат на модернизацию электросети и оборудования.

Справка

Проведенные в Московском энергетическом институте под руководством д. т. н., проф. Абрамовича Б. Н. исследования влияния качества электроэнергии на работу электрооборудования показали, что при нарушении нормативных показателей качества электроэнергии (КЭ) происходит сокращение срока службы:

Например, стоимость ущерба от плохого качества электрической энергии в экономике США оценивается более чем в 150 миллиардов долларов в год (данные 2005 г.).

А как оценивается ущерб от плохого качества электроэнергии в экономике России?

Официальная статистика по степени серьезности и распределению падений напряжения отсутствует, но в настоящее время проводятся некоторые измерения регионального масштаба, которые могут дать информацию к размышлению. Например, в исследовании, проводимом одним из основных производителей электроэнергии, замерялись перепады напряжения на 12 участках мощностью от 5 до 30 МВА. За 10 месяцев было зафиксировано 858 перепадов, 42 из которых привели к сбоям и финансовым потерям. Хотя на всех этих 12 участках потребителями были производители с несложной технологией, финансовые потери составили 600 тыс. евро, а максимальная сумма убытков на один участок составила 165 тыс. евро.

Немного теории

Электрической сети в целом требуется равенство генерации и потребления активной и реактивной мощности. Основным нормативным показателем поддержания баланса активной мощности в каждый момент времени является частота переменного тока, которая служит общесистемным критерием. А основным нормативным показателем поддержания баланса реактивной мощности в каждый момент времени является уровень напряжения — местный критерий, который для каждого узла нагрузки и каждой ступени номинального напряжения существенно отличается. Поэтому в отличие от баланса активной мощности необходимо обеспечить баланс реактивной мощности не только в целом в энергосистеме, но и в узлах нагрузки. И оттого, где и как «гуляет» реактивная мощность (РМ) по сети, зависит многое, если не все.

Наглядным примером серьезности проблемы компенсации РМ является отчет Рабочей группы Госдумы РФ по расследованию причин московской аварии, произошедшей 25 мая 2005 г. В нем сделан вывод о том, что одной из главных причин аварии на подстанции «Чагино» явился дефицит источников реактивной мощности в электрической сети Москвы и Подмосковья. В отчете также указано, что такой дефицит создает угрозу повторения системных аварий.

Вот почему существует необходимость самого серьезного отношения к проблеме компенсации реактивной мощности.

Сегодня, когда строительство новых генерирующих мощностей очень дорого и невозможно в короткий срок, актуальным становится максимальное использование действующих ЛЭП и трансформаторов, повышая их пропускную способность за счет применения различных устройств управляемой компенсации реактивной мощности.

Как известно, полная мощность сети состоит из активной мощности Р, передаваемой в нагрузку, и реактивной Q, которая используется на нагрев обмоток электродвигателей и трансформаторов. Q отрицательно влияет на режимы работы электрической сети и показатели качества электроэнергии. Но без нее процесс получения полезной работы был бы невозможен. Рисунок 1.

как происходит компенсация реактивной мощности. Смотреть фото как происходит компенсация реактивной мощности. Смотреть картинку как происходит компенсация реактивной мощности. Картинка про как происходит компенсация реактивной мощности. Фото как происходит компенсация реактивной мощности

Но отрицательное влияние РМ на сеть несоизмеримо больше, чем положительное. Недаром еще во времена заката СССР в конце 80-х директивно на всех промышленных предприятиях были установлены конденсаторные батареи. Знали, что делали.

Реактивный ток дополнительно загружает высоковольтные линии и трансформаторы, приводит к увеличению потерь активной (АМ) и реактивной мощности (РМ), влияет на уровень напряжения у потребителя. Большая величина РМ в сети приводит к несинусоидальности напряжения, появляются дополнительные потери в сети, электрических машинах и трансформаторах, сокращается срок службы изоляции кабелей и другого оборудования, появляются помехи и сбои в работе компьютеров, устройств автоматики, телемеханики и связи, возникают резонансные перенапряжения в электрических сетях.

При компенсации РМ происходит уменьшение потребления РМ и возврат ее в сеть (см. график 1). Вследствие этого полная мощность S, потребляемая из сети практически вся используется на полезную работу. Q1 уменьшается до значения Q2.

Использование установок компенсации реактивной мощности (УКРМ) позволяет

как происходит компенсация реактивной мощности. Смотреть фото как происходит компенсация реактивной мощности. Смотреть картинку как происходит компенсация реактивной мощности. Картинка про как происходит компенсация реактивной мощности. Фото как происходит компенсация реактивной мощности

Характерные отраслевые коэффициенты мощности приведены в Таблице 1.

Характерные отраслевые коэффициенты мощности

Тип нагрузкиПримерный коэффициент мощности
Мукомольные и крупозаводы0,6-0,7
Мясоперерабатывающие предприятия0,6-0,7
Мебельные предприятия0,6-0,7
Деревообрабатывающие предприятия0,55-0,65
Молокоперерабатывающие предприятия0,6-0,8
Машиностроительные предприятия0,5-0,6
Авторемонтные предприятия0,7-0,8

Когда мы 7 лет назад начали заниматься проблемой повышения качества и надежности электроснабжения предприятий и снижения энергопотребления при помощи компенсации реактивной мощности, у нас появились вопросы:

Пришлось взяться за учебники, пройти техническое обучение, перелопатить кучу литературы и Интернет в поисках расчетов, методик выбора, характеристик процессов протекающих в электросетях при работе УКМ.

Мы пришли к выводу, чтобы понять суть процессов, протекающих в конкретной электросети, нужна достоверная техническая информация. Для этого мы начали проводить мониторинг параметров электросети. Были закуплены специальные приборы, позволяющие снимать одновременно несколько десятков характеристик электросети с интервалом в доли секунды. (Токи, напряжения, активные, реактивные и полные мощности по каждой фазе, Cos F, гармонический состав сети и т.д.). Полученная информация оказалась очень интересна (см. графики 1, 2).

как происходит компенсация реактивной мощности. Смотреть фото как происходит компенсация реактивной мощности. Смотреть картинку как происходит компенсация реактивной мощности. Картинка про как происходит компенсация реактивной мощности. Фото как происходит компенсация реактивной мощности

как происходит компенсация реактивной мощности. Смотреть фото как происходит компенсация реактивной мощности. Смотреть картинку как происходит компенсация реактивной мощности. Картинка про как происходит компенсация реактивной мощности. Фото как происходит компенсация реактивной мощности

Как видно из графиков, при выключенной конденсаторной установке Cos F «плавает» от 0,3 до 0,5. При включенной он фактически стабилен на уровне 0,75-0,8. Также при включенной УКРМ сглаживаются пульсации тока и напряжения, характер потребления становится более равномерным и исключает преждевременный выход оборудования из строя. И наконец, уровень нелинейных искажений (гармоник) в сети THDI находится в пределах нормы (не более 5-7%).

За 7 лет нами проведен мониторинг параметров электрических сетей более 30 промышленных предприятий Алтая различного профиля, проанализированы полученные данные, выяснены некоторые закономерности процесса потребления реактивной мощности (РМ).

Анализ результатов измерений в разных участках системы электроснабжения предприятия позволяет определить оборудование, влияющее на качество электроэнергии, генерирующее помехи, которые могут выводить из строя компьютеры и другое электронное оборудование. Такой анализ необходимо производить на объектах, где используются частотные электроприводы или имеют место частые коммутации мощных электроприемников (например сварочное производство).

Технический эффект, ожидаемый в результате применения УКРМ, представлен в Таблице 2.

Технический эффект ожидаемый в результате применения УКРМ

Cos φ1, без компенсацииCos φ2, с компенсациейСнижение величины тока и полной мощности, %Снижение величины тепловых потерь, %
0,50,94469
0,515075
0,60,93355
0,614064
0,70,92239
0,713051
0,812036

Экономический эффект от использования УКРМ выражается в значительной экономии энергоресурсов предприятиями, снижением расходов на ремонты и аварии, а также прямой выгодой в виде снижения платы за потребляемую электроэнергию.

Заключение

Для энергосистем, промышленных предприятий реактивная мощность всегда была и остается неизбежным атрибутом технологического оборота электроэнергии, влияющим на его экономическую эффективность. И поэтому использование такого мощного рычага воздействия как управление реактивной мощностью — один из наиболее эффективных и малозатратных способов энергосбережения как в энергосистемах, так и в сетях предприятий и ЖКХ. И оттого, как технически грамотно будет решаться этот вопрос потребителями с одной стороны, и энергоснабжающими организациями с другой, будет зависеть надежность всей системы электроснабжения страны.

В данной статье мы рассмотрели только общие аспекты компенсации РМ. Намеренно не были затронуты вопросы воздействия компенсации РМ на энергосбережение, качество электроэнергии, и экономическую эффективность деятельности предприятий. Все эти вопросы могут быть рассмотрены нами позже в случае заинтересованности читательской аудитории.

А. В. СИНЕЕВ,
член правления МОСЭП,
г. Барнаул.

Источник

Компенсация реактивной мощности: прямая экономия без обмана счетчика

как происходит компенсация реактивной мощности. Смотреть фото как происходит компенсация реактивной мощности. Смотреть картинку как происходит компенсация реактивной мощности. Картинка про как происходит компенсация реактивной мощности. Фото как происходит компенсация реактивной мощности

С пoмoщью малoзатратных уcтрoйcтв, дoбавленных в cеть переменнoгo тoка, прoмышленнoе предприятие мoжет ocтавить за coбoй, без преувеличения, дo трети «oбычных» затрат на электрoэнергию. И oбманывать cчетчик при этoм вoвcе не придетcя. Нужно вcего лишь укротить реактивную мощноcть, гуляющую по кабелям, как ей заблагораccудитcя. Здеcь мы раccкажем о воздейcтвии «незваной мощноcти» на энергозатраты производcтва, а также о cовременном оборудовании, способном не только сгладить последствия вредного явления, но и обратить зло на пользу.

К глубокому сожалению, сегодня многие из нас не владеют поднятой проблемой даже в общих чертах. А если и понимают ее, то чаще всего недооценивают, не усматривая в компенсации реактивной мощности сколь-нибудь ощутимого источника для экономии. Но ведь здесь даже не надо быть специалистом. Поскольку все мы, так или иначе, если не на производственном, так на бытовом уровне, являемся постоянными потребителями электроэнергии. Уже поэтому ее качество и стоимость нам должны быть столь же не безразличны, как качество и стоимость подаваемой в дом питьевой воды.

Цена миллисекундных отключений

У нас в России, как водится, официальной статистики по сему поводу не существует. Хотя, если основательно пошарить по информационным сусекам, можно обнаружить некоторые измерения местного масштаба, тоже дающие почву для размышления. Например, в Северо-Западном федеральном округе один крупный поставщик электроэнергии, которому почему-то не спалось на лаврах постоянного дохода, взял да и подсчитал, сколько перепадов напряжения случилось конкретно на 12 участках мощностью от 5 до 30 МВА и каковы оказались последствия.

Измеряли ровно 10 месяцев, на большее по каким-то причинам не хватило. За это время отметили 858 перепадов, 42 из которых повлекли ощутимые сбои в сети и финансовые потери. Что примечательно, на всех этих 12 участках основными потребителями энергии были предприятия с несложной технологией. Тем не менее, финансовые потери были оценены в сумму 600 тыс. евро, а максимальный убыток, пришедшийся на отдельно взятый участок, составил 165 тыс. евро. Особо подчеркнем, что штрафных санкций никто никому предъявлять не собирался, замеряли так, для общего интереса, а потому о «подтасовке» речи быть не может. Тогда откуда взялись те самые перепады количеством в сотни и многотысячные потери в инвалюте?

Столь пристальное внимание северо-западной статистике мы уделили не только потому, что другой нет. Тем исследователям спасибо сказать надо уже за то, что они подчеркнули назревшую, как опухоль, проблему. К сожалению, регламентируемая сегодня система защиты предприятия основана на старой, как детекторный приемник, норме проектирования, которая допускает от 2 до 3 аварийных отключений электроэнергии в год, хотя в разных регионах в настоящее время они происходят с частотой до 40 раз в год.

За последние годы характер потребления электроэнергии претерпел существенные изменения. В технологических процессах большинства предприятий, будь то завод или современная медицинская клиника, становится все больше низковольтных приводных электродвигателей, микропроцессорной техники, систем телекоммуникации. И разве вы сами не замечали, как тот же любимый всеми Интернет часто буквально обрывается короткими по продолжительности (несколько мСек) провалами и перегрузками питающего напряжения. Но если для пользователя сети такое прерывание досадно, но не страшно, то сложному автоматизированному производству провал напряжения в десятые доли секунды может грозить частичной или полной остановкой. Прямой и косвенный ущерб тогда надоест считать.

Напрашивается сакраментальный вывод, что нужно просто как следует прижать тех же энергетиков, чтобы они тщательнее следили за качеством электроэнергии в своих сетях (думается, теперь и несведущий понял, о чем мы говорим). Но дело в том, что энергосистемы, не располагая порой полной информацией о режимах работы потребительских электроустановок, никак не могут влиять на них и не имеют возможности добиться полного контроля над процессом управления, поскольку виной всему реактивная мощность.

Основу любого электродвигателя или трансформатора составляют витки медного провода, намотанного на магнитную основу. Поэтому в процессе работы они уже в силу законов физики за счет высокой магнитной проницаемости и самоиндукции генерируют реактивную мощность. А та, совершая колебательные движения от нагрузки к источнику (генератору) и обратно, распространяется по сети.

Казалось бы, «незваной мощности» надо только радоваться, поскольку она ниоткуда взялась. Да вот незадача: согласно теории, РМ характеризуется задержкой (ток отстает) между синусоидами фаз напряжения и тока сети. В моменты, когда синусоиды напряжения и тока имеют противоположные знаки, мощность не потребляется нагрузкой, а подается обратно по сети в сторону генератора. И мотается эта «добавочка» на вашем же счетчике, причем не в обратную сторону.

Компенсация реактивной мощности может быть индивидуальной (местной) и централизованной (общей). В первом случае параллельно нагрузке подключают один или несколько (батарею) косинусных конденсаторов, во втором – некоторое количество конденсаторов (батарей) подключается к главному распределительному щиту.

В случае централизованной компенсации конденсаторная установка оснащается специализированным контроллером (автоматическим регулятором реактивной мощности) и коммутационно-защитной аппаратурой (контакторами и предохранителями). При отклонении значения cosw от заданного значения контроллер подключает или отключает определенные конденсаторные батареи (компенсация осуществляется ступенчато). Таким образом, контроль осуществляется автоматически, а мощность подключенных конденсаторов соответствует потребляемой в данный конкретный момент времени реактивной мощности, что исключает генерацию реактивной мощности в сеть и появление в сети перенапряжения.

Оборудование для борьбы с РМ выпускают сейчас многие компании и у нас, и за рубежом. Для наглядности рассмотрим предлагаемое ими разнообразие на примере отечественной «Матик-электро». Оборудование для компенсации реактивной мощности с помощью низковольтных КРМ-0,4 кВ (аналог УКМ 58, АКУ, УККРМ), производимое этой компанией и оснащенное автоматическими регуляторами европейского уровня, способно почти на треть сократить расходы любого производства на электроэнергию. Конденсаторные установки существенным образом снижают нагрузку на трансформаторы и кабели и тем самым повышают надежность сетей.

Регулируемая установка компенсации реактивной мощности в автоматическом режиме, под управлением микропроцессорного регулятора улучшает cosw путем подключения/отключения необходимого числа батарей конденсаторов. Они выпускаются с шагом от 20 до 450 кВАр и суммарной мощностью до 100 МВАр. Производятся также установки, в которых компенсация реактивной мощности осуществляется одновременно с фильтрацией гармоник в сети.

В отличие от установок с контакторами, тиристорные КУ обладают быстродействием на 2 порядка выше, т.к. не требуется задержка срабатывания на время разряда конденсатора. В тиристорных установках после подачи сигнала на коммутацию тиристор «сам выбирает» время подключения в момент, когда напряжение в сети и на конденсаторе равны. Задержка включения составляет не более 20 мс.

При этом следует отметить, что конденсаторы подключаются без пусковых токов. Это продлевает срок службы конденсаторов. В связи с отсутствием движущихся механических контактов тиристорные конденсаторные установки имеют больший ресурс. Для защиты тиристоров применяются специальные быстродействующие предохранители.

Трансформаторы тока разборные TA.R (аналог Т-0.66, ТНШЛ, ТШ), на ток от 250 до 5000 А, для быстрого монтажа, предназначены для облегчения установки их на шину (от 20х30 мм до 160х80 мм) и кабель (диаметр от 20 до 80 мм). Данные трансформаторы удобны как внешний датчик тока для установок компенсации реактивной мощности.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *