что означает геномная днк человека
Что означает геномная днк человека
Тест, включающий наиболее полную и комплексную этиологическую диагностику острых и хронических заболеваний и оценку микробиоты урогенитального тракта у мужчин.
Учет и интерпретация результатов реакции осуществляется автоматически.
Результат теста включает ряд показателей: уровень геномной ДНК человека, общей бактериальной массы (ОБМ), суммарные титры нормальной микрофлоры, а также основных представителей условно-патогенной и патогенной микрофлоры. При наличии в исследуемом образце ДНК условно-патогенных микроорганизмов указывается их количество, при отсутствии указывается «не выявлено».
Моча рекомендована только для идентификации патогенов в острый период.
Диагностика бактериального простатита; исследование микрофлоры урогенитального тракта.
Синонимы английские
Diagnosis of bacterial prostatitis; diagnosis of infectious-inflammatory process.
Полимеразная цепная реакция в режиме реального времени.
Какой биоматериал можно использовать для исследования?
Биоптат, секрет простаты, первая порция утренней мочи, соскоб, соскоб урогенитальный, эякулят.
Общая информация об исследовании
Болезни мочеполовой системы являются ведущей причиной нарушения репродуктивной функции у мужчин, что имеет огромное значение, особенно в современных условиях снижения рождаемости. Наиболее частой причиной болезней мочеполовой системы у мужчин является инфекционно-воспалительный процесс, длительность и интенсивность которого определяет степень нарушений репродуктивной функции: хроническое воспаление оказывает продолжительное токсическое действие на сперматогенный эпителий, нарушает гематотестикулярный барьер, реологические свойства и химический состав семенной жидкости, а также может приводить к развитию аутоиммунных реакций, например к образованию антиспермальных антител. В процессе развития воспалительной реакции возрастает количество активированных клеток иммунной системы, что сопровождается повышенным образованием свободных радикалов кислорода и увеличением секреции лимфокинов и монокинов, результатом чего является вторичное воспаление в тканях репродуктивного тракта.
Одно из наиболее часто встречающихся заболеваний – бактериальный простатит – широко распространено среди мужчин всех возрастных групп. Это воспалительный процесс, развивающийся в тканях предстательной железы, инфекционной или физиологической природы. Частота заболевания достигает 30-73 %.
Без своевременно принятых мер болезнь быстро прогрессирует. Предстательная железа продолжает вырабатывать секрет, являющийся составной частью семенной жидкости, в нем активно размножаются патогенные микроорганизмы. Усугубляет картину заболевания и анатомическое строение простаты: через нее не проходят крупные кровеносные сосуды, следовательно, скорость кровотока достаточно низка. Отсутствие быстрой фильтрации способствует накоплению в железе продуктов жизнедеятельности микробов, а также провоцирует возникновение застойных явлений в тканях.
Клиническим проявлением недуга является затрудненное болезненное мочеиспускание с последующей задержкой мочи на сутки и более.
До настоящего времени диагноз «бактериальный простатит» подтверждался микробиологическим методом (бак. анализ) и результаты врач получал через неделю или 14 дней. С помощью ПЦР-исследования Андрофлор результат можно получить в течение нескольких суток.
Метод ПЦР с детекцией результатов в режиме реального времени (ПЦР-РВ) позволяет выявлять ДНК/РНК микроорганизмов вне зависимости от их культуральных и морфологических особенностей, в том числе микроорганизмов, не поддающихся культивированию; охарактеризовать структуру микробиоты соответствующего биотопа для оценки патогенетической роли каждой группы микроорганизмов у данного пациента. Комбинация высокой чувствительности и специфичности, скорость (1-1,5 часа) получения результата, возможность количественного анализа и диагностики некультивируемых микроорганизмов делают технологию ПЦР максимально удобной и клинически значимой в исследовании инфекционных заболеваний.
Одно исследование микрофлоры урогенитального тракта мужчин методом ПЦР в режиме реального времени Андрофлор позволяет полностью заменить комплекс методов ПЦР-РВ, предлагаемых в стандартах медицинской помощи, которые утверждены Минздравом России в 2012 г., а также расширить его за счет дополнительной диагностики облигатных анаэробов.
Для чего используется исследование?
Когда назначается исследование?
Что означают результаты?
Результат теста будет представлен в виде таблицы в графическом виде.
Учет и интерпретация результатов реакции осуществляется автоматически.
При наличии в исследуемом образце ДНК условно-патогенных микроорганизмов указывается количество микроорганизма. При отсутствии указывается «не выявлено».
Показатели, определяемые Набором реагентов «Андрофлор»:
Геномная ДНК человека (ГДЧ)
Общая бактериальная масса (ОБМ)
Megasphaera spp./Veilonella spp./Dialister spp.
Sneathia spp./Leptotrihia spp. /Fusobacterium spp.
Bacteroides spp./Porphyromonas spp./Prevotella spp.
Peptostreptococcus spp./Parvimonas spp./Eubacterium spp.
Pseudomonas aeruginosa/Ralstonia spp./Burkholderia spp.
Полученная в результате исследования информация позволяет определить необходимый объем терапии, а повторное исследование оценить эффективность лечения.
Технология «Андрофлор-скрин» предназначена для диагностики и мониторинга лечения острых инфекционно-воспалительных заболеваний мочеполовой системы у мужчин, в отличие от подобного исследования «Андрофлор», которое имеет более широкий спектр показателей и предназначено для диагностики любых инфекционно-воспалительных заболеваний, в том числе протекающих бессимптомно.
Кто назначает исследование?
Уролог, врач общей практики.
Геном человека: полезная книга, или глянцевый журнал?
Автор
Редакторы
Изучение человеческого генома имеет одну конечную цель — оно затевается исключительно ради того, чтобы, взглянув на последовательность ДНК конкретного индивида, можно было бы получить о нем максимум информации. О том, какими болезнями он может заболеть, какие способности в себе развить, и какие опасности его могут поджидать при выборе того или иного жизненного пути. История изучения этого вопроса довольно продолжительна, однако заветная цель приближается к нам далеко не так быстро, как хотелось бы.
История вопроса
Особенности психики человека таковы, что он склонен переоценивать собственные достижения. Эта закономерность очень четко прослеживается в развитии научной мысли. Ученым зачастую кажется, что стоит совершить еще небольшой рывок, как истина откроется во всей красе, а будущим поколениям естествоиспытателей останется лишь стряхивать пыль с приборов. Однако в подавляющем большинстве случаев получается так, что новое открытие порождает больше вопросов, чем дает ответов.
В начале прошлого столетия казалось, что до выяснения природы наследственности рукой подать, ведь были заново открыты законы Менделя, сформулирована Хромосомная теория наследственности Моргана. Согласно представлениям того времени, наследственные факторы — гены — являлись белковыми молекулами, последовательно соединенными между собой в хромосомах. Казалось, что вот-вот эти белки будут выделены из хромосом и все встанет на свои места. При этом, естественно, ни у кого и в мыслях не было, что в генетическом материале организма могут присутствовать элементы, напрямую не определяющие каких-либо его свойств. Была уверенность в том, что каждый ген-белок отвечает за определенную функцию. Однако все оказалось куда сложнее.
Во-первых, к середине 40-х годов XX века, благодаря опытам Эйвери, Маклеода и Маккарти становится понятно, что функции хранения и передачи наследственной информации могут выполнять вовсе не белки. Внимание ученых начинает концентрироваться на изучении ДНК — полимерной молекулы, состоящей из дезоксирибонуклеотидов. К тому моменту было хорошо известно, что ДНК входит в состав хромосом, однако полагали, что эта молекула выполняет структурные функции, являясь своего рода хромосомным каркасом. Окончательно обосновали ключевую роль ДНК в наследственности Альфред Херши и Марта Чейз, только в начале 50-х годов показав, что бактериофаги способны размножаться без собственных белков — в инфицируемой ими бактериальной клетке оказывается и реплицируется только молекула ДНК.
Структуру ДНК впервые описывают Джеймс Уотсон и Френсис Крик в своей работе 1953 года [1]. В последующие 20 лет накапливаются знания о природе генетического кода (М. Ниренберг и Дж. Маттеи), работе генов и регуляторных элементов (Ф. Жакоб и Ж. Моно), тонкой структуре гена (С. Бензер), об укладке ДНК на нуклеосомах (А. Корнберг). Также становится понятно, что в геномах организмов содержатся не только уникальные последовательности структурных генов — в них присутствует огромное количество часто повторяющихся и вовсе не кодирующих белки последовательностей.
Своя и чужая ДНК
В середине прошлого века тезис о том, что генетический материал организма содержит исключительно структуры, необходимые для формирования фенотипических признаков, было странно подвергать сомнению. Любую особенность организма пытались объяснить с позиций целесообразности, и поэтому считалось, что лишних и нефункциональных структур быть просто не должно.
Опыты, подтверждающие наличие в геноме «лишнего» материала, довольно любопытны. Первые указания на такую особенность были получены при изучении кинетики реассоциации геномной ДНК. Дело в том, что последовательности ДНК с разной скоростью восстанавливаются после денатурации. Если последовательность содержит много повторов, она восстанавливается быстрее, а если последовательность ДНК уникальна — времени на ее ренатурацию требуется больше. В ходе проведения экспериментов по реассоциации геномных ДНК эукариот было выяснено, что очень большая часть генома приходится на разного рода быстро ренатурирующие повторы, сателлиты и прочую «бесполезную» ДНК (кстати, термин “junk DNA” был введен еще Френсисом Криком). Еще сравнительно недавно бытовало мнение, что такого рода «мусорные последовательности» необходимы для того, чтобы защищать полезную ДНК от мутаций, как бы вызывая огонь на себя. В самом деле, если мутациям подвергается некодирующий участок ДНК, то это, скорее всего, не отразится негативно на фенотипе особи. Однако, как выяснилось впоследствии, роль такой ДНК в геноме нельзя ограничить только этим. Дальнейшее изучение вопроса показало, что повторяющаяся и некодирующая фракция ДНК в геноме чрезвычайно разнообразна по своей структуре. Помимо повторов, выполняющих чисто технические функции связывания с белками ядерного матрикса или компонентами центромеры, обнаруживаются и такие участки генома, которые напрямую не влияют на морфологию организма и на выполнение им тех или иных функций. Исследование того, откуда эти участки взялись и почему они есть во всех организмах, представляло интерес.
Рисунок 1. Барбара МакКлинток.
Примерно одновременно с работами по изучению роли ДНК в наследственности подвергается первой критике хромосомная теория Моргана в хрестоматийном ее понимании. Это связано с тем, что Барбара МакКлинток обнаруживает генетические элементы, которые, по ее мнению, способны менять свою локализацию на хромосоме [2]. Эти революционные исследования поначалу не находят понимания, поскольку противоречат принятому тогда постулату о том, что каждый ген имеет свой постоянный хромосомный локус. Сама МакКлинток даже получает обидное прозвище crazy Barbara (сумасшедшая Барбара). Однако позднее выясняется, что подобные мобильные генетические элементы присутствуют у всех живых организмов (стоит также упомянуть, что МакКлинток спустя 30 лет после своего открытия удостаивается Нобелевской премии в области физиологии и медицины [3]).
У животных, а конкретно, у дрозофилы, мобильные элементы впервые обнаруживают в лабораториях Хогнесса в США и Георгиева в СССР. Причем очень быстро становится ясно, что таких элементов огромное множество, в геномах они представлены очень широко, а по своим структурным и функциональным особенностям могут отличаться очень сильно. Изучение структуры различных классов мобильных элементов генома (МГЭ) приводит ученых к выводу об их родстве с вирусами. Жизненные циклы вирусов и многих МГЭ очень похожи, да и белки, кодируемые их генами, выполняют одни и те же функции, что отчетливо указывает на общность происхождения этих примитивных живых систем.
Экология генома: молекулярные паразиты и эндосимбионты
До 80-х — 90-х годов прошлого столетия тезис о том, что внутри человеческого генома могут находиться последовательности, собственно к человеку не имеющие никакого отношения, звучал бы дико. Однако сейчас мы сталкиваемся с тем, что геномы едва ли не всех эукариот кишат молекулярными паразитами! Известно, что подавляющее большинство вирусов могут встраивать свои ДНК в геном организма, который они заражают. При этом задача вируса очевидна — это размножение. Однако этой цели вирусы могут добиваться разными способами. С одной стороны, логично сразу же после встраивания начать синтезировать свои собственные белки, реплицировать свой генетический материал, а потом выходить из одной клетки организма и начинать заражать другие. В этой ситуации возникает небольшая проблема: клетка-хозяин погибает, а вслед за одной клеткой может погибнуть и весь организм, не дав возможности вирусу заразить другие организмы. Вступает в силу один из законов экологии: паразит, губящий своего хозяина, губит и себя самого. Поэтому возникает принципиально иная стратегия поведения молекулярных паразитов. После интеграции в геном многие вирусы начинают вести себя так, будто являются его неотъемлемой частью. Они не начинают активно копировать свой генетический материал, а остаются в сайте интеграции в виде так называемого провируса. Такой подход позволяет вирусам копировать информацию своего генома вместе с репликацией генома организма-хозяина, передаваясь по наследству потомкам этого хозяина. Британский генетик Джон Брукфилд (John F. Brookfield) в своих обзорах последних лет обосновывает введенный недавно термин «экология генома» [4], рассматривая в том числе и геном человека, как среду обитания всевозможных эндогенных ретровирусов, транспозонов и коротких сателлитных последовательностей. Причем между организмом-хозяином и такими сожителями ведется борьба по всем законам экосистем: паразит стремится размножиться, причиняя минимум беспокойства хозяину, а хозяин стремится либо паразита нейтрализовать, либо заставить работать на себя. При этом случаи мутуалистических отношений (сожительства с обоюдной пользой) между чужеродными последовательностями и геномом не редки. Одним из красивых примеров такого симбиоза является участие белковых продуктов эндогенных ретровирусов человека в процессе образования ткани плаценты. К тому же, широко известно, что относительно безопасные «одомашненные» вирусы могут препятствовать проникновению в клетки агрессивных вирусов извне.
Разумеется, помимо пользы от мобильных генетических элементов можно вполне ожидать и проблем. В частности, они могут провоцировать хромосомные аберрации, вызывать своими перемещениями мутации и изменения в активности генов, приводить к дестабилизации структуры всего генома. Взаимодействие между МГЭ и хозяйским геномом могут приводить к самым разнообразным и любопытным последствиям: от возникновения наследственных заболеваний до провоцирования процессов видообразования и образования новых генов.
Запутанная молекулярная инструкция
Проект «Геном человека» стартовал в начале девяностых и к настоящему времени завершен. Первые данные о составе нашего генома были опубликованы еще в 2001 году [5]. Тогда стало ясно, что на долю структурных генов (генов, содержащих информацию о строении белков или РНК) приходится около 5% всего генома (а ведь еще совсем недавно считалось, что кроме них в генетическом материале клетки быть ничего не должно). Самих же генов всего порядка 25–30 тысяч, что совсем не так много, как считалось. На долю же всевозможных мобильных последовательностей отводится целых 45% геномной ДНК! Остальное представлено повторами, поломанными неактивными генами и прочими техническими последовательностями. Причем все это невероятное разнообразие молекулярных текстов из поколения в поколение взаимодействует друг с другом, перестраивается, меняется местами и чуть ли не противоречит друг другу. Выяснить, как вся эта биоинформатическая каша из отдельных слов, написанных четырьмя молекулярными буквами-нуклеотидами, определяет внешний вид, характер и прочие особенности человека, — это задача, на решение которой уйдет еще очень много времени.
Рисунок 2. Классы повторов в геноме человека.
LINE — Long interspersed nuclear repeats. Одни из самых древних элементов. Содержат ген обратной транскриптазы и способны вносить разрывы в геномную ДНК при транспозиции. Часто образуют несовершенные копии.
SINE — Short interspersed nuclear repeats. Короткие последовательности, содержащие промотор полимеразы III. Их транспозиции происходят за счет белков, кодируемых генами LINE-элементов.
LTR (long terminal repeat) retrotransposons — группа элементов, по своей организации больше всего напоминающая вирусы (если точнее — ретровирусы). Считается, что часть ретротранспозонов произошла от вирусов, когда-то проникнувших в геном. Некоторые LTR-элементы сохраняют возможность покидать клетку-хозяина и инфицировать другие клетки. Включают от одного до нескольких генов.
DNA transposons — мобильные элементы, не требующие стадии образования РНК-копии для транспозиций. Кодируют фермент транспозазу, необходимую для перемещения.
Разумеется, значение проекта «Геном человека» сложно переоценить. Уже сейчас сделано множество интереснейших работ, которые были бы невозможны без прочтения последовательности человеческой ДНК. Однако каких-то 5–10 лет назад казалось, что секвенирование генома решит сразу все проблемы биологической науки, а заодно и медицины. В прессе было очень модно обсуждать прочтение «книги жизни», в которой содержится подробная инструкция о том, как собрать человеческий организм. Вроде бы оставалось лишь последовательно вникнуть в смысл каждой главы. И вдруг столь значительная книга, страницы которой так мечтали пролистать ученые конца XX века, на поверку оказывается зачитанным глянцевым журналом, пестрящим рекламой, вырезанными страницами, частными объявлениями с грамматическими ошибками и чьими-то заметками на полях. Найти что-то полезное в таком молекулярном издании довольно сложно, однако ученым не просто предстоит отделить в нем ценную информацию от бессмыслицы, но также понять алгоритм того, как полезные отрывки сочетаются и дополняют друг друга, реализуясь в целостной картине человеческого организма. И это не самая простая головоломка.
Генетические нарушения у человека и методы их выявления
Генами называются участки ДНК, в которых закодирована структура всех белков в теле человека или любого другого живого организма. В биологии действует правило: «один ген – один белок», то есть в каждом гене содержится информация только об одном определенном белке.
В 1990 году большая группа ученых из разных стран начала проект под названием «Геном человека». Он завершился в 2003 году и помог установить, что человеческий геном содержит 20–25 тысяч генов. Каждый ген представлен двумя копиями, которые кодируют один и тот же белок, но могут немного различаться. Большинство генов одинаковые у всех людей – различается всего 1%.
ДНК находится в клетке внутри ядра. Она особым образом организована в виде хромосом – эти нитеподобные структуры можно рассмотреть в микроскоп с достаточно большим увеличением. Внутри хромосомы ДНК намотана на белки – гистоны. Когда гены неактивны, они расположены очень компактно, а во время считывания генетического материала молекула ДНК расплетается.
В клетках человека есть структуры, которые называются митохондриями. Они выполняют роль «электростанций» и отвечают за дыхание. Это единственные клеточные органеллы, у которых есть собственная ДНК. И в ней тоже могут возникать нарушения.
Весь набор хромосом в клетке называется кариотипом. В норме у человека он представлен 23 парами хромосом, всего их 46. Выделяют два вида хромосом:
Методы исследования хромосом
Для исследования кариотипа применяют специальный метод – световую микроскопию дифференциально окрашенных метафазных хромосом культивированных лимфоцитов периферической крови.
Этот анализ применяется для диагностики различных хромосомных заболеваний. Он позволяет выявлять такие нарушения, как:
Однако с помощью исследования кариотипа можно выявить не все генетические нарушения. Оно не способно обнаружить такие изменения, как:
Для получения дополнительной информации, не видимой в световой микроскоп, используют хромосомный микроматричный анализ (ХМА). С его помощью можно изучить все клинически значимые участки генома и выявить изменения в количестве и структуре хромосом, а именно микрополомки (микроделеции и микродупликации).
Во время хромосомного микроматричного анализа применяют технологию полногеномной амплификации и гибридизации фрагментов опытной ДНК с олигонуклеотидами, нанесенными на микроматрицу. Если объяснять простыми словами, то сначала ДНК, которую необходимо изучить, копируют, чтобы увеличить ее количество, а затем смешивают ее со специальными ДНК-микрочипами, которые помогают выявлять различные нарушения.
Эта методика позволяет в одном исследовании выявлять делеции и дупликации участков ДНК по всему геному. Разрешающая способность стандартного ХМА от 100 000 пар нуклеотидов – «букв» генетического кода (в отдельных регионах от 10 000 п. н.).
С помощью ХМА можно выявлять:
Однако, как и предыдущий метод, хромосомный микроматричный анализ имеет некоторые ограничения. Он не позволяет выявлять или ограничен в выявлении таких аномалий, как:
Мутации в генах и заболевания, к которым они способны приводить
Мутации – это изменения, которые происходят в ДНК как случайным образом, так и под действием разных факторов, например химических веществ, ионизирующих излучений. Они могут затрагивать как отдельные «буквы» генетического кода, так и большие участки генома. Мутации происходят постоянно, и это основной двигатель эволюции. Чаще всего они бывают нейтральными, то есть ни на что не влияют, не приносят ни вреда, ни пользы. В редких случаях встречаются полезные мутации – они дают организму некоторые преимущества. Также встречаются вредные мутации – из-за них нарушается работа важных белков, наоборот, происходят достаточно часто. Генетические изменения, которые происходят более чем у 1% людей, называются полиморфизмами – это нормальная, естественная изменчивость ДНК Полиморфизмы ответственны за множество нормальных отличий между людьми, таких как цвет глаз, волос и группа крови.
Все внешние признаки и особенности работы организма, которые человек получает от родителей, передаются с помощью генов. Это важнейшее свойство всех живых организмов называется наследственностью. В зависимости от того, как проявляются гены в тех или иных признаках, их делят на две большие группы.
Например, карий цвет глаз у человека является доминантным. Поэтому у кареглазых родителей с высокой вероятностью родится кареглазый ребенок. Если у одного из родителей глаза карие, а у другого голубые, то вероятность рождения кареглазых детей в такой семье тоже высока. У двух голубоглазых родителей, скорее всего, все дети тоже будут голубоглазыми. А вот у кареглазых родителей может родиться ребенок с голубыми глазами, если у обоих есть рецессивные «гены голубоглазости», и они достанутся ребенку. Конечно, это упрощенная схема, потому что за цвет глаз отвечает не один, а несколько генов, но на практике эти законы наследования зачастую работают. Аналогичным образом потомству могут передаваться и наследственные заболевания.
Как выявляют рецессивные мутации?
Для выявления мутаций, которые передаются рецессивно, используют целый ряд исследований.
Секвенирование по Сэнгеру – метод секвенирования (определения последовательности нуклеотидов, буквально – «прочтение» генетического кода) ДНК, также известен как метод обрыва цепи. Анализ используется для подтверждения выявленных мутаций. Это лучший метод для идентификации коротких тандемных повторов и секвенирования отдельных генов. Метод может обрабатывать только относительно короткие последовательности ДНК (до 300–1000 пар оснований) одновременно. Однако самым большим недостатком этого метода является большое количество времени, которое требуется для его проведения.
Если неизвестно, какую нужно выявить мутацию, то используют специальные панели.
Панель исследования — тестирование на наличие определенных мутаций, входящих в перечень конкретной панели исследования. Анализ позволяет выявить одномоментно разные мутации, которые могут приводить к генетическим заболеваниям. Анализ позволяет компоновать мутации в панели по частоте встречаемости (скрининговые панели, направленные на выявление носительства патологической мутации, часто встречаемой в данном регионе или в определенной замкнутой популяции) и по поражаемому органу или системе органов (панель «Патология соединительной ткани»). Но и у этого анализа есть ограничения. Анализ не позволяет выявить хромосомные аберрации, мозаицизм и мутации, не включенные в панель, митохондриальные заболевания, а также эпигенетические нарушения.
Не в каждой семье можно отследить все возможные рецессивные заболевания. Тогда на помощь приходит секвенирование экзома – тест для определения генетических повреждений (мутаций) в ДНК путем исследования в одном тесте практически всех областей генома, кодирующих белки, изменения которых являются причиной наследственных болезней.
Секвенирование следующего поколения-NGS – определение последовательности нуклеотидов в геномной ДНК или в совокупности информационных РНК (транскриптоме) путем амплификации (копирования) множества коротких участков генов. Это разнообразие генных фрагментов в итоге покрывает всю совокупность целевых генов или, при необходимости, весь геном.
Анализ позволяет выявить точечные мутации, вставки, делеции, инверсии и перестановки в экзоме. Анализ не позволяет выявить большие перестройки; мутации с изменением числа копий (CNV); мутации, вовлеченные в трехаллельное наследование; мутации митохондриального генома; эпигенетические эффекты; большие тринуклеотидные повторы; рецессивные мутации, связанные с Х-хромосомой, у женщин при заболеваниях, связанных с неравномерной Х-деактивацией, фенокопии и однородительские дисомии, и гены, имеющие близкие по структуре псевдогены, могут не распознаваться.
Что делать, если в семье есть наследственное заболевание?
Существуют два способа выявить наследственные генетические мутации у эмбриона:
Предимплантационное генетическое тестирование (ПГТ) в цикле ЭКО. Это диагностика генетических заболеваний у эмбриона человека перед имплантацией в слизистую оболочку матки, то есть до начала беременности. Обычно для анализа проводится биопсия одного бластомера (клетки зародыша) у эмбриона на стадии дробления (4–10 бластомеров). Существует несколько видов ПГТ: на хромосомные отклонения, на моногенные заболевания и на структурные хромосомные перестройки. Данные Simon с соавторами (2018) говорят о том, что в случае проведения ЭКО с ПГТ у пациентки 38–40 лет результативность ЭКО составляет 60%. Но при исследовании эмбриона есть ряд ограничений. Так, из-за ограниченного числа клеток можно не определить мозаицизм.
Если нет возможности провести ЭКО с ПГТ, то используют второй вариант – исследование плодного материала во время беременности.
Для забора плодного материала используют инвазивные методы:
Далее эти клетки исследуют при помощи одного или нескольких генетических тестов (которые имеют свои ограничения). Проведение инвазивных методов может быть связано с риском для беременности порядка 1%.
Таким образом, проведя дополнительные исследования, можно значительно снизить риск рождения ребенка с генетическим заболеванием в конкретной семье. Но привести этот риск к нулю на сегодняшний день, к сожалению, невозможно, так как любой генетический тест имеет ряд ограничений, что делает невозможным исключить абсолютно все генетические болезни.
Автор статьи
Пелина Ангелина Георгиевна
Ведёт генетическое обследование доноров Репробанка, осуществляет подбор доноров для пар, имеющих ранее рождённых детей с установленной генетической патологией.