что означает количество ядер и потоков в процессоре
Процессор: потоки или ядра
На рынке компьютерных комплектующих присутствует немало процессоров, у которых число потоков больше числа физических ядер. В некоторых задачах эти «виртуальные ядра» могут дать существенный прирост в производительности, в других они практически бесполезны.
Многоядерность и гиперпоточность
Поток (применительно к процессору), или виртуальное ядро – результат реализации вычислений, при котором одно физическое ядро способно программно разделять свою производительность и работать над несколькими последовательностями команд одновременно. Простыми словами, ЦП делает вид для операционной системы и программ, что у него больше ядер, чем есть на самом деле. Убедиться в этом можно, открыв диспетчер устройств или другую программу для мониторинга комплектующих.
Гиперпоточность позволяет распараллеливать вычисления более эффективно – если одно виртуальное ядро завершило работу над своей задачей и находится в режиме ожидания, его ресурсы может использовать другое. В случаях, когда гиперпоточность не поддерживается, эти ресурсы простаивают. Таким образом, поддержка виртуальных ядер может ускорить выполнение некоторых задач, хотя, разумеется, она не так хороша, как наличие дополнительных физических, и удвоения производительности ожидать не стоит.
Иллюстрация концепции потоков/виртуальных ядер:
Рассмотрим следующий упрощенный пример: если двухъядерный процессор с двумя потоками работает с четырьмя последовательностями команд одновременно, а производительность одного ядра для одной последовательности избыточна, то общая производительность будет ниже, чем в случае, если на месте такого процессора будет вариант с двумя ядрами, но с четырьмя потоками, поскольку на переключение между задачами тратится дополнительное время, и часть ресурсов иногда простаивает. А вот если вычислительных ресурсов одного потока недостаточно для выполнения одной последовательности, то виртуальные ядра почти не помогут – нужны дополнительные физические.
Распараллеливание нагрузки при помощи технологии Intel Hyper-Threading
Немного истории
Когда-то процессоры были одноядерными и однопоточными. Если требовалось эффективно распараллеливать вычисления (в серверном сегменте, рабочих станциях) использовались материнские платы с несколькими процессорными разъемами. Соответственно, материнке требовалась возможность соединять все процессоры с другими комплектующими (например, оперативной памятью). По сравнению с современной реализацией, возникали дополнительные задержки, возрастали энергозатраты.
Развитие архитектуры началось с гиперпоточности, а в дальнейшем на одном кристалле производители стали размещать и несколько физических ядер. Сейчас оба основных производителя центральных процессоров для ПК (Intel и AMD) выпускают модели с двумя и более физическими ядрами, как с поддержкой виртуальных ядер, так и без нее.
Потоки или ядра?
Центральный процессор – один из ключевых компонентов системы, влияющих на ее производительность в целевых задачах, а также на удобство использования компьютера. Часто у пользователей, желающих собрать систему, возникает вопрос: на что ориентироваться при выборе ЦП? Стоит ли переплачивать за дополнительные потоки/виртуальные ядра?
Наибольшую выгоду виртуальные ядра приносят в рабочих задачах, подверженных эффективному распараллеливанию. К ним относятся, например, архивация файлов, обработка фотографий, рендеринг видео, моделирование. Таким образом, польза дополнительных потоков для компьютера, который будет использоваться в первую очередь для игр или медиа, сомнительна. Впрочем, если параллельно с играми будут выполняться и другие задачи, такие как стриминг, запись/обработка видео, скачивание/раздача файлов при помощи торрент-клиента, антивирусная проверка, она возрастает. В подобных ситуациях виртуальные ядра помогают снять фоновую нагрузку с физических.
Впрочем, кратного роста вычислительной мощи ждать все равно не стоит, и для типичных домашних сценариев использования переплата за виртуальные ядра часто будет неоправданной. Другое дело – если компьютер используется для профессиональной деятельности, и применяются программы, хорошо работающие с гиперпоточностью – прирост в производительности при правильной оптимизации может составлять десятки процентов.
Подытожим : если речь идет о домашнем игровом или мультимедийном компьютере, не стоит ждать чудес от виртуальных ядер, и, если за них придется доплатить ощутимую сумму, лучше рассмотреть вариант с дополнительными физическими, или вложить деньги в другие комплектующие. Если же система будет использоваться для работы – прирост может быть значительным, поэтому стоит ознакомиться с тестами гиперпоточных ЦП для конкретного вида задач.
Что такое центральный процессор?
Наверное, каждый пользователь мало знакомый с компьютером сталкивался с кучей непонятных ему характеристик при выборе центрального процессора: техпроцесс, кэш, сокет; обращался за советом к друзьям и знакомым, компетентным в вопросе компьютерного железа. Давайте разберемся в многообразии всевозможных параметров, потому как процессор – это важнейшая часть вашего ПК, а понимание его характеристик подарит вам уверенность при покупке и дальнейшем использовании.
Центральный процессор
Процессор персонального компьютера представляет собой микросхему, которая отвечает за выполнение любых операций с данными и управляет периферийными устройствами. Он содержится в специальном кремниевом корпусе, называемом кристаллом. Для краткого обозначения используют аббревиатуру — ЦП (центральный процессор) или CPU (от англ. Central Processing Unit – центральное обрабатывающее устройство). На современном рынке компьютерных комплектующих присутствуют две конкурирующие корпорации, Intel и AMD, которые беспрестанно участвуют в гонке за производительность новых процессоров, постоянно совершенствуя технологический процесс.
Техпроцесс
Техпроцесс — это размер, используемый при производстве процессоров. Он определяет величину транзистора, единицей измерения которого является нм (нанометр). Транзисторы, в свою очередь, составляют внутреннюю основу ЦП. Суть заключается в том, что постоянное совершенствование методики изготовления позволяет уменьшать размер этих компонентов. В результате на кристалле процессора их размещается гораздо больше. Это способствует улучшению характеристик CPU, поэтому в его параметрах всегда указывают используемый техпроцесс. Например, Intel Core i5-760 выполнен по техпроцессу 45 нм, а Intel Core i5-2500K по 32 нм, исходя из этой информации, можно судить о том, насколько процессор современен и превосходит по производительности своего предшественника, но при выборе необходимо учитывать и ряд других параметров.
Архитектура
Также процессорам свойственно такая характеристика, как архитектура — набор свойств, присущий целому семейству процессоров, как правило, выпускаемому в течение многих лет. Говоря другими словами, архитектура – это их организация или внутренняя конструкция ЦП.
Количество ядер
Ядро – самый главный элемент центрального процессора. Оно представляет собой часть процессора, способное выполнять один поток команд. Ядра отличаются по размеру кэш памяти, частоте шины, технологии изготовления и т. д. Производители с каждым последующим техпроцессом присваивают им новые имена (к примеру, ядро процессора AMD – Zambezi, а Intel – Lynnfield). С развитием технологий производства процессоров появилась возможность размещать в одном корпусе более одного ядра, что значительно увеличивает производительность CPU и помогает выполнять несколько задач одновременно, а также использовать несколько ядер в работе программ. Многоядерные процессоры смогут быстрее справиться с архивацией, декодированием видео, работой современных видеоигр и т.д. Например, линейки процессоров Core 2 Duo и Core 2 Quad от Intel, в которых используются двухъядерные и четырехъядерные ЦП, соответственно. На данный момент массово доступны процессоры с 2, 3, 4 и 6 ядрами. Их большее количество используется в серверных решениях и не требуется рядовому пользователю ПК.
Частота
Помимо количества ядер на производительность влияет тактовая частота. Значение этой характеристики отражает производительность CPU в количестве тактов (операций) в секунду. Еще одной немаловажной характеристикой является частота шины (FSB – Front Side Bus) демонстрирующая скорость, с которой происходит обмен данных между процессором и периферией компьютера. Тактовая частота пропорциональна частоте шины.
Сокет
Чтобы будущий процессор при апгрейде был совместим с имеющейся материнской платой, необходимо знать его сокет. Сокетом называют разъем, в который устанавливается ЦП на материнскую плату компьютера. Тип сокета характеризуется количеством ножек и производителем процессора. Различные сокеты соответствуют определенным типам CPU, таким образом, каждый разъём допускает установку процессора определённого типа. Компания Intel использует сокет LGA1156, LGA1366 и LGA1155, а AMD — AM2+ и AM3.
Кэш — объем памяти с очень большой скоростью доступа, необходимый для ускорения обращения к данным, постоянно находящимся в памяти с меньшей скоростью доступа (оперативной памяти). При выборе процессора, помните, что увеличение размера кэш-памяти положительно влияет на производительность большинства приложений. Кэш центрального процессора различается тремя уровнями (L1, L2 и L3), располагаясь непосредственно на ядре процессора. В него попадают данные из оперативной памяти для более высокой скорости обработки. Стоит также учесть, что для многоядерных CPU указывается объем кэш-памяти первого уровня для одного ядра. Кэш второго уровня выполняет аналогичные функции, отличаясь более низкой скоростью и большим объемом. Если вы предполагаете использовать процессор для ресурсоемких задач, то модель с большим объемом кэша второго уровня будет предпочтительнее, учитывая что для многоядерных процессоров указывается суммарный объем кэша L2. Кэшем L3 комплектуются самые производительные процессоры, такие как AMD Phenom, AMD Phenom II, Intel Core i3, Intel Core i5, Intel Core i7, Intel Xeon. Кэш третьего уровня наименее быстродействующий, но он может достигать 30 Мб.
Энергопотребление
Энергопотребление процессора тесно связано с технологией его производства. С уменьшением нанометров техпроцесса, увеличением количества транзисторов и повышением тактовой частоты процессоров происходит рост потребления электроэнергии CPU. Например, процессоры линейки Core i7 от Intel требуют до 130 и более ватт. Напряжение подающееся на ядро ярко характеризует энергопотребление процессора. Этот параметр особенно важен при выборе ЦП для использования в качестве мультимедиа центра. В современных моделях процессоров используются различные технологии, которые помогают бороться с излишним энергопотреблением: встраиваемые температурные датчики, системы автоматического контроля напряжения и частоты ядер процессора, энергосберегающие режимы при слабой нагрузке на ЦП.
Дополнительные возможности
Современные процессоры приобрели возможности работы в 2-х и 3-х канальных режимах с оперативной памятью, что значительно сказывается на ее производительности, а также поддерживают больший набор инструкций, поднимающий их функциональность на новый уровень. Графические процессоры обрабатывают видео своими силами, тем самым разгружая ЦП, благодаря технологии DXVA (от англ. DirectX Video Acceleration – ускорение видео компонентом DirectX). Компания Intel использует вышеупомянутую технологию Turbo Boost для динамического изменения тактовой частоты центрального процессора. Технология Speed Step управляет энергопотреблением CPU в зависимости от активности процессора, а Intel Virtualization Technology аппаратно создает виртуальную среду для использования нескольких операционных систем. Также современные процессоры могут делиться на виртуальные ядра с помощью технологии Hyper Threading. Например, двухъядерный процессор способен делить тактовую частоту одного ядра на два, что способствует высокой производительности обработки данных с помощью четырех виртуальных ядер.
Размышляя о конфигурации вашего будущего ПК, не забывайте про видеокарту и ее GPU (от англ. Graphics Processing Unit – графическое обрабатывающее устройство) – процессор вашей видеокарты, который отвечает за рендеринг (арифметические операции с геометрическими, физическими объектами и т.п.). Чем больше частота его ядра и частота памяти, тем меньше будет нагрузки на центральный процессор. Особенное внимание к графическому процессору должны проявить геймеры.
Ядра или потоки: выясняем что важнее для процессора
В спецификации каждого процессора обязательно присутствует информация о количестве ядер и потоков. Правила «чем больше, тем лучше», в этой ситуации никто не отменял, но давайте выясним, в каких задачах виртуальные ядра способны дать ощутимый прирост производительности, а в каких останутся бесполезными.
Зачем процессору несколько ядер?
Вот поэтому процессор – это мозговой центр каждого компьютера, отвечающий за его вычислительные способности и скорость работы.
Первые процессоры были едиными устройствами, которые принимали команды и выполняли их в строгой очередности. Одно ядро позволяло выбирать процессор при покупке только по показателям частоты. А недостаток производительности на первых порах компенсировали созданием двух- и многопроцессорных конфигураций. В таких сборках команды пользователя на ввод обрабатывал первый процессор, а остальные операции по возможности равномерно распределялись между остальными. Для сборки таких систем использовались двухпроцессорные платы или конфигурации на несколько сокетов.
Следующим шагом производители создали многоядерную архитектуру, позволяющую на площади, казалось бы, небольшого микрочипа размещать несколько вычислительных центров, которые по сути являлись самостоятельными процессорами. Так в продаже появились двух-, четырех- и восьмиядерные устройства, которые обрабатывали сразу несколько потоков информации.
Позже корпорация Intel в линейке процессоров Pentium внедрила техническую возможность выполнения одним ядром двух команд за такт, что стало началом новой эпохи в компьютерных технологиях – гиперпоточности процессоров. А сейчас специалисты компании активно работают над новой технологией реализации четырех потоков на одном ядре, и уже в ближайшее время подобные процессоры будут представлены публике.
Чем отличаются ядра и потоки
Ядро – это самостоятельный вычислительный блок в архитектуре процессора, способный выполнять линейную последовательность задач за определенный период времени. Если нагрузить одно ядро несколькими последовательностями задач, то оно будет попеременно переключаться между ними, обрабатывая по одной задаче из каждого потока. В масштабах системы это приводит к замедлению работы программ и сервисов.
Поток – это программно выделенная область в физическом ядре процессора. Такая виртуальная реализация позволяет разделять ресурсы ядра и работать параллельно с двумя разными последовательностями команд. Таким образом операционная система воспринимает поток, как отдельный вычислительный центр, следовательно, ресурс ядра используется более рационально, и скорость вычислений увеличивается.
Стоит ли ожидать удвоения производительности?
Виртуальное разделение вычислительной мощности процессора на потоки называется гиперпоточностью. На практике это не физическое увеличение количества ядер, следовательно, и вычислительный потенциал процессора остается постоянным.
Гиперпоточность – это инструмент, позволяющий процессору более оперативно выполнять команды операционной системы и распределять вычислительный ресурс.
Таким образом, удвоенное количество потоков по отношению к ядрам способно повысить эффективность процессора за счет одновременного выполнения нескольких задач каждым ядром. Но прирост, даже по заверениям лидера рынка в производстве процессоров Intel будет находиться в пределах 30%.
А вот об увеличении энергопотребления и чрезмерном нагреве волноваться не стоит. Так как виртуальное разделение выполнено на производстве, то компанией просчитаны все рабочие параметры, такие как мощность и TDP, указанные в спецификации.
Что выбирать: ядра или потоки?
Поскольку ядра – это физические «мозговые центры», занимающиеся вычислениями, то за общую производительность центрального процессора отвечают именно они. Поэтому количеством ядер, ну и еще частотой процессора определяется его производительность.
Но и количество потоков также заслуживает внимания. Разберем на примере:
Двухъядерный процессор с двумя потокам нагружается операционной системой четырьмя параллельными последовательностями команд, например, от открытых игр и программ. Команды так и останутся в четырех «очередях», и ядра будут попеременно производить вычисления из каждой. При этом производительность ядра зачастую избыточна для обработки одной команды. Поэтому часть вычислительного потенциала ядра, а значит и процессора останется в резерве.
Если же взять аналогичный процессор с двумя ядрами, но уже на четыре потока, то все четыре очереди будут задействованы одновременно, по максимуму загружая ядра. Следовательно, задачи будут решены быстрее, а простоя вычислительных мощностей удастся избежать.
На практике это дает нам возможность одновременно запускать несколько программ: работать с документами, слушать музыку, общаться в мессенджерах и выполнять поиск в браузере. При этом программы будут работать эффективно, быстро, без торможений и зависаний.
Таким образом, чем больше ядер будет в процессоре, тем выше его производительность и скорость выполнения различных задач. А удвоенное количество потоков позволяет повысить эффективность процессора и задействовать его технический потенциал на полную.
В заключении интересное видео от компании Intel о том, как они создают микрочипы.
Ядра или тактовая частота процессора: выясняем, что важнее для работы и игр
реклама
Процессоры будут являться «синтетическими», «созданными» на основе многоядерного процессора Ryzen 7 2700. В связи с тем, что данный процессор отказывается запускаться на частоте в 2 GHz (но данное сравнение не имело бы никакого отношения с действительностью), удалось создать лишь два «типовых» процессора.
реклама
Даже простым перемножением ядер на частоты, не сложно догадаться, что конфигурация с шестью ядрами, работающими на частоте в 3 GHz будет немного сильнее конфигурации с четырьмя ядрами, работающими на частоте 4 GHz. В условном «математическом бенчмарке» (данный «бенчмарк» справедлив только для «синтетических процессоров», различающихся лишь количеством и частотой ядер), суммарная производительность данных CPU будет сопоставима, как «18» и «16» в пользу процессора с большим количеством ядер, так как для большей справедливости данного тестирования, ему следовало «привязать» частоту в 2.66 GHz.
Но данное действие было невозможно по той же причине, по которой в тестировании отсутствует «синтетический Ryzen 7 / Xeon» с частотой в 2 GHz. Материнская плата ASUS TUF B450M-PRO GAMING не может запустить процессор Ryzen 7 2700 с частотой ниже 2.8 GHz: во-первых, это не подразумевается, так как минимальный множитель для данного процессора равен 28; во-вторых, при попытке «взятия» необходимой частоты посредством комбинации множитель/делитель (формула следующая: Ratio=2*FID/DID), система отказывается запускаться с любым напряжением, даже в значении «авто».
И кто-то заметит, что данное сравнение двух математически не равных процессоров якобы теряет смысл, так как «итак понятно, что процессор с шестью ядрами окажется чуть сильней». Но в данном случае частоты процессоров приближены к реальным, а сравнить процессоры на 2 GHz, 2,66GHz и 4 GHz, было бы как минимум нелепо, так как процессоров Ryzen с такими низкими частотами попросту нет. И опять же, это ни в коем случае не «симуляция известных процессоров», это всего лишь попытка сравнения высокой частоты и большого количества ядер, что важнее сейчас.
В общем, далее нет смысла вдаваться в нюансы данного эксперимента, предлагаем же перейти к реальному исследованию.
реклама
Но для начала осмотр тестовой конфигурации.
«Синтетические» процессоры тестировались на следующей конфигурации:
Вольтаж для процессора с шестью ядрами был подобран 0.8125 вольта, вольтаж же для процессора с четырьмя разогнанными ядрами составил 1.25 вольта. LLC был отрегулирован так, что напряжение при возрастании нагрузки оставалось стабильным.
Тестирование энергопотребления / уровня шума / температурных показателей
Тестирование процессоров проводилось посредством 10-минутного теста OCCT версии 5.5.7 с использованием AVX2 инструкций.
реклама
Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.
Таким образом, в тестировании OCCT процессор с шестью медленными ядрами оказался более «прохладным», чем процессор с разогнанными четырьмя ядрами. Но результаты данного тестирования нельзя интерпретировать на якобы Ryzen 5 3500X и Ryzen 3 3100/3300X. Все процессоры уникальны и данный тест лишь показывает серьезно возросшие показатели тепловыделения при небольшом разгоне, что характерно для всех процессоров Ryzen.
Тестирование в синтетических программах: CPU-Z
Теперь, когда мы разобрались с поведением двух экземпляров в стресс-тесте, предлагаю сравнить производительность процессоров в CPU-Z.
Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.
Результаты «математического бенчмарка» подтвердились. Четыре разогнанных ядра хоть и обошли шесть маломощных ядер в однопоточной производительности, но серьезно уступили во многоядерной производительности. Медленные шесть ядер обходят четыре быстрых на 12.5%, данная разница была известна еще заранее из «математического бенчмарка»: разница между 18 и 16 составляет 12.5%.
Тестирование в синтетике: Cinebench R20, CPU Queen, CPU PhotoWorxx
Перед тем, как мы перейдем непосредственно к играм, предлагаю ознакомиться со сводным тестированием процессоров в популярной синтетике.
Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.
Как мы можем наблюдать, процессоры очень близки по своей производительности в синтетических тестах. Но у процессора с низкой частотой и шестью ядрами закономерный отрыв в Cinebench R20 и небольшое превосходство в CPU PhotoWorxx. По результатам «общей синтетики» трудно выявить явного фаворита, процессоры очень близки, но за счет чисто «математического превосходства», 6 ядер с частотой в 3 GHz становятся более предпочтительными.
«Игровая синтетика»: Ashes of the Singularity: Escalation
Тестирование производилось с акцентом именно на CPU.
Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.
Стоит отметить, что оба процессора посредственно справились с данной игрой, но визуально плавность картинки была все-таки за процессором с шестью ядрами.
Assassin’s Creed Odyssey
Дополнительные слабые ядра положительно сказались на производительности в игре Assassin’s Creed Odyssey.
Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.
Даже на минимальные настройки графики не смогли «спасти» четыре разогнанных ядра от проигрыша в Assassin’s Creed Odyssey. К сожалению, разница в гигагерц не дала фору четырем ядрам.
Far Cry New Dawn
Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.
В данной игре шесть низкочастотных ядер потерпели разгромное поражение по плавности, проиграв четырем быстрым ядрам.
Metro Exodus
Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.
И опять с крохотным отрывом победу одержали четыре быстрых ядра. Но не стоит забывать, что это самые минимальные настройки графики, если бы видеокарта позволяла выставить максимальные настройки графики без «бутылочного горлышка», то процессор с четырьмя ядрами, скорее всего, серьезно бы уступил более медленному процессору, но с большим количеством ядер.
Заключение
Четыре ядра, шесть ядер, низкая частота, высокая частота имеет ли это такое большое значение, если итоговая производительность «гуляет» от игры к игре, а в синтетических тестах разница между этими решениями настолько мала, что становится трудно «рассудить», какой типовой процессор действительно лучший? Все зависит от ваших конкретных задач.