что означает в математике запись у f x
Что такое Функция?
7 класс, 11 класс, ЕГЭ/ОГЭ
Понятие функции
Определение функции можно сформулировать по-разному. Рассмотрим несколько вариантов, чтобы усвоить наверняка.
1. Функция — это взаимосвязь между величинами, то есть зависимость одной переменной величины от другой.
Знакомое обозначение y = f (x) как раз и выражает идею такой зависимости одной величины от другой. Величина у зависит от величины х по определенному закону, или правилу, которое обозначается f.
Вывод: меняя х (независимую переменную, или аргумент) — меняем значение у.
2. Функция — это определенное действие над переменной.
Значит, можно взять величину х, как-то над ней поколдовать — и получить соответствующую величину у.
В технической литературе можно встретить такие определения функции для устройств, в которых на вход подается х — на выходе получается у. Схематично это выглядит так:
В этом значении слово «функция» используют и в далеких от математики областях. Например, так говорят о функциях ноутбука, костей в организме или даже о функциях менеджера в компании. В каждом перечисленном случае речь идет именно о неких действиях.
3. Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один элемент второго множества. Это самое популярное определение в учебниках по математике.
Например, в функции у = 2х каждому действительному числу х ставит в соответствие число в два раза большее, чем х.
Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.
Например, для функции вида
область определения выглядит так:
И записать это можно так: D (y): х ≠ 0.
Область значений — множество у, то есть это значения, которые может принимать функция.
Например, естественная область значений функции y = x2 — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.
Для примера рассмотрим соответствие между двумя множествами — человек-владелец странички в инстаграм и сама страничка, у которой есть владелец. Такое соответствие можно назвать взаимно-однозначным — у человека есть страничка, и это можно проверить. И наоборот — по аккаунту в инстаграм можно проверить, кто им владеет.
В математике тоже есть такие взаимно-однозначные функции. Например, линейная функция у = 3х +2. Каждому значению х соответствует одно и только одно значение у. И наоборот — зная у, можно сразу найти х.
Построение графиков функций
Понятие функции
Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.
Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:
Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.
Например, для функции вида область определения выглядит так
Область значений — множество у, то есть это значения, которые может принимать функция.
Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.
Понятие графика функции
Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.
График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.
Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.
Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.
В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.
Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:
Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.
Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.
Исследование функции
Важные точки графика функции y = f(x):
Стационарные точки — точки, в которых производная функции f(x) равна нулю.
Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.
Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.
Нули функции — это значения аргумента, при которых функция равна нулю.
Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.
Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке:
Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.
Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.
Схема построения графика функции:
У нас есть отличные онлайн занятия по математике для учеников с 1 по 11 классы! Приходи на пробное занятие с нашими лучшими преподавателями!
Построение графика функции
Чтобы понять, как строить графики функций, потренируемся на примерах.
Задача 1. Построим график функции
Упростим формулу функции:
Задача 2. Построим график функции
Выделим в формуле функции целую часть:
График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции
Выделение целой части — полезный прием, который применяется в решении неравенств, построении графиков и оценке целых величин.
Задача 3. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.
Вспомним, как параметры a, b и c определяют положение параболы.
Ветви вниз, следовательно, a 0.
Точка пересечения с осью Oy — c = 0.
Координата вершины , т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.
Ветви вниз, следовательно, a 0.
Координата вершины , т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b
x | y |
0 | -1 |
1 | 2 |
x | y |
0 | 2 |
1 | 1 |
x | y |
0 | 0 |
1 | 2 |
k = 2 > 0 — угол наклона к оси Ox острый, B = 0 — график проходит через начало координат.
Задача 5. Построить график функции
Это дробно-рациональная функция. Область определения функции D(y): x ≠ 4; x ≠ 0.
Нули функции: 3, 2, 6.
Промежутки знакопостоянства функции определим с помощью метода интервалов.
Вертикальные асимптоты: x = 0, x = 4.
Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.
Вот так выглядит график:
Задача 6. Построить графики функций:
б)
г)
д)
Когда сложная функция получена из простейшей через несколько преобразований, то преобразования графиков можно выполнить в порядке арифметических действий с аргументом.
а)
Преобразование в одно действие типа f(x) + a.
Сдвигаем график вверх на 1:
б)
Сдвигаем график вправо на 1:
Сдвигаем график вправо на 1:
Сдвигаем график вверх на 2:
г)
Преобразование в одно действие типа
Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:
д)
Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.
Сжимаем график в два раза вдоль оси абсцисс:
Сдвигаем график влево на 1/2 вдоль оси абсцисс:
Отражаем график симметрично относительно оси абсцисс:
§ 39. Что означает в математике запись у = ƒ(x)
Изучая какой-либо реальный процесс, обычно обращают внимание на две величины, участвующие в процессе (в более сложных процессах участвуют не две величины, а три, четыре и т.д., но мы пока такие процессы не рассматриваем): одна из них меняется как бы сама собой, независимо ни от чего (такую переменную чаще всего обозначают буквой х), а другая величина принимает значения, которые зависят от выбранных значений переменной х (такую зависимую переменную чаще всего обозначают буквой у). Математической моделью реального процесса как раз и является запись на математическом языке зависимости у от х, т. е. связи между переменными х и у.
Эту запись («игрек равен эф от икс») следует понимать так: имеется выражение ƒ(x) с переменной х, с помощью которого мы находим значения переменной у.
если х = 1, то у = 1 2 = 1;
А вот образец обратного перевода.
Во всех случаях план действий один и тот же: нужно в выражении ƒ(х) подставить вместо х то значение аргумента, которое указано в скобках, и выполнить соответствующие вычисления и преобразования.
Замечание. Разумеется, вместо буквы ƒ можно использовать любую другую букву (в основном из латинского алфавита): g(x), h(x), s(x) и т. д.
Использование математической модели вида у = ƒ(x) оказывается удобным во многих случаях, в частности тогда, когда реальный процесс описывается различными формулами на разных промежутках изменения независимой переменной.
Пример 3. Дана функция у = ƒ(x), где
а) Вычислить: ƒ(-5), ƒ(-2), ƒ(1,5), ƒ(4), ƒ(0).
б) Построить график функции у = ƒ(x).
Параграф 2. Повторение и расширение сведений о функции.
Работу выполнил: Косярский А.А. студент группы 45.2
Пункт 2.1. Понятие числовой функции. Простейшие свойства числовых функций.
1. Понятие числовой функции
2. График функции
Графиком функции f называется множество всех точек координатной плоскости
с координатами (x; f (x)), где первая координата x
«пробегает» всю область определения функции, а вторая координата
равна соответствующему значению функции f в точке x
3. Возрастающие и убывающие функции
Функция f(x) возрастающая на множестве P:
если x2 > x1, то f(x2) > f(x1)
для любых x1 и x2, лежащих во множестве P
(при увеличении аргумента соотвествующие точки графика поднимаются)
Функция f(x) убывающая на множестве P:
если x2 > x1, то f(x2)
4. Чётные и нечётные функции
Функция f(x) чётная:
если f(-x) = f(x)
для любых x из области определения.
График чётной функции симметричен относительно Oy
Объяснение и обоснование
1. Понятие функции. С понятием функции вы ознакомились в курсе алгебры.
Напомним, что зависимость переменной y от переменной x называется функцией, если
каждому значению x соответствуе единственное значение y.
В курсе алгебры и начал математического анализа мы будем пользоваться
следующим определением числовой функции.
Числовой функцией с областью определения D называется зависимость,
при которой каждому числу x из множества D ставится в соответствие
единственное число y.
Функции обозначают латинскими (иногда греческими) буквами. Рассмотрим
произвольную функцию f. Число y, соответствующее числу x (на рисунке 9 это
показано стрелкой), называют значением функции f в точке x и обозначают f (x).
Чаще всего функцию задают с помощью какой-либо формулы. Если нет
дополнительных ограничений, то областью определения функции, заданной
формулой, считается множество всех значений переменной, при которых эта
формула имеет смысл.
Например, если функция задана формулой y = √x + 1, то её область
определения: x ≥ 0, то есть D(y) = [0;+∞), а область значений:
y ≥ 1, то есть E(y) = [1;+∞).
Функция может задаваться не только при помощи формул, но и сс помощью
таблицы, графика или словесного описания. Например, на рисунке 10
графически задана функция y = f(x) с областью определения
D(f) = [-1;3] и множеством значений E(f) = [1;4]
3. Возрастающие и убывающие функции. Важными характеристиками
функций являются их возрастание и убывание.
На рисунке 15 приведён график ещё одной возрастающей функции
y = x³. Действительно, при x2 > x1 имеем x2³ > x1³,
то есть f(x2) > f(x1).
Функция f(x) называется убывающей на множестве P, если
большему значению аргумента из этого множества соответствует
меньшее значение функции.
То есть для любых двух значений x1 и x2 из множества P, если
x2 > x1, то f(x2) x1 имеем
-2⋅
отметим, что для возрастающих и убывающих функций выполняются
свойства, обратные утверждениям, содержащимся в определении.
Например, если x² > 8, то есть x² > 2², то,
учитывая возрастание функции f(x) = x², получаем x > 2.
4. Чётные и нечётные функции. Рассмотрим функции, области
определения которых симметричны относительно начала координат, то
есть содержат вместе с каждым числом x и число (-x). Для таких
функций вводятся понятия чётности и нечётности.
Функция f называется чётной, если для любого x из её области определения
f(-x) = f(x).
Если функция f(x) чётная, то ее графику вместе с каждой точкой
M с координатами (x;y) = (x;f(x)) принадлежит также точка M1 с
координатами (-x;y) = (-x;f(-x))=(-x;f(x)). Точки M и M1
расположены симметрично относительно оси Oy (рис. 18), поэтому
и весь график чётной функции расположен симметрично относительно оси OY.
Если функци f(x) нечётная, то её графику вместе с каждой точкой M с
координатами (x;y) = (x;f(x)) принадлежит также точка M1 с
координатами (-x;y) = (-x;f(-x))=(-x;-f(x)). Точки M и M1
расположены симметрично относительно начала координат (рис. 19), поэтому
и весь график нечётной функции расположен симметрично относительно начала координат.
Например, график нечётной функции y = 1/x (см. пункт 4 табл. 2) симметричен относительно
начала координат, то есть точки O.
ВОПРОСЫ ДЛЯ КОНТРОЛЯ:
ПРИМЕРЫ РЕШЕНИЯ ПРАКТИЧЕСКИХ ЗАДАНИЙ
УПРАЖНЕНИЯ К ПАРАГРАФУ
5. Обоснуйте, что заданная функция является возрастающей (на её области определения):
1) y = 3x 2) y = x + 5 3) y = x³ 4) y = x 5 5) y = √(x)
8. Докажите, что на заданном промежутке функция убывает:
1) y = 3/x, где x 0
9. Докажите, что функция y = x² на промежутке [0; + ∞) возрастает, а на промежутке (- ∞;0] убывает.
11. Используя утверждения, приведённые в примере 6:
1) Обоснуйте, что уравнение x³ + x = 10 имеет единственный корень x = 2;
2) Подберите корень уравнения √(x) + x = 6 и докажите, что других корней это уравнение не имеет.
12. Обоснуйте, что заданная функция является чётной:
1) y = x 6 2) y = 1/x² + 1 3) y = √ (x² + 1) 4) y = √ (|x| + x 4 )
Алгебра
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Понятие функции
Понятие функции в школьной программе впервые встречается в 7 классе, поэтому настоятельно рекомендуем перечитать посвященный этой теме урок. Напомним, что функцией (в учебной литературе может использоваться сокращение ф-ция) называется соответствие между элементами двух множеств или, другими словами, зависимость между двумя величинами. Чаще всего в алгебре рассматриваются числовые ф-ции, которые заданы аналитически, то есть формулой. В качестве примера можно привести запись
Здесь х – это независимая переменная, или аргумент, а у – зависимая величина, или просто функция. Принципиально важно, что каждому значению аргумента соответствует только одно значение зависимой величины. Часто в математике используют запись
Она читается как «игрек равен эф от икс» и означает, что величина у как-то зависит от х. По сути, она равноценна записи
Если в скобках стоит конкретное число, то запись означает значение ф-ции при этом значении аргумента.
У каждой ф-ции есть область допустимых значений (используется сокращение ОДЗ), или область определения функции. Это те значения аргумента, при которых ф-ция определена. Здесь возможны два случая. В первом область определения указывается прямо. Например, если рассматривается функция у = х 4 при значениях х от 1 до 3, то и областью определения будет всё множество чисел от 1 до 3. Для обозначения области определения используется запись D(y) или D(f). При изучении неравенств мы уже познакомились с такими объектами, как числовые промежутки. Именно с их помощью указывают ОДЗ.
Пример. Постройте график функции у = х, если D(y) = [– 3; 4].
Решение. Ф-ция у = х – это линейная функция, мы уже умеем строить их графики (они представляют собой прямую линию). Выглядеть он будет так:
Однако в условии также есть запись D (y) = [– 3; 4], которая означает, что ф-ция определена только при х от – 3 до 4. С учетом этого условия график несколько преобразится:
Грубо говоря, часть графика, которая не входит в область определения, просто «отрезана».
Значительно чаще область определения явно не указывается. В этом случае предполагается, что ф-ция определена во всех точках числовой прямой, в которых ее вообще возможно вычислить. Например, ф-цию у = 9х 3 – 47 можно вычислить при любом значении х, поэтому ее область определения – вся числовая прямая, то есть D(y) = (– ∞; + ∞).
А когда же вычислить функцию невозможно? К этому уроку нам известны две таких ситуации:
Например, вычислить ф-цию у = 5/х при х = 0 невозможно, поэтому ее область определения – вся числовая прямая, кроме нуля, то есть
имеет область определения D(y) = [5; + ∞), так как при х 2 при D(y) = [– 2; 2] областью значений будет промежуток [0; 4], то есть Е(у) = [0; 4]. Это видно из графика функции:
Ещё раз напомним, что область определения и область значения функции указываются с помощью числовых промежутков.
Теперь перейдем к тем понятиям, которые не изучались ранее. Первое из них – это нули функции. Так называют те значения аргумента, при которых функция обращается в ноль.
есть два нуля, х = 4 и х = 5. Убедиться в этом можно подстановкой:
у(4) = 4 2 – 9•4 + 20 = 0
у (5) = 5 2 – 9•5 + 20 = 0
Для нахождения нулей ф-ции у = f(x) надо просто решить уравнение
Например, чтобы найти нули приведенной выше функции
надо решить уравнение
Сделаем это, ведь мы уже умеем решать квадратные уравнения:
На графике нули ф-ции – это те точки, в которых график пересекает ось Ох:
Ещё одно новое понятие – промежутки знакопостоянства. Так называют промежутки числовой прямой, на которых ф-ция либо только положительна, либо только отрицательна. Для наглядности покажем их на графике:
Пусть есть ф-ция у = f(x). Для нахождения промежутков знакопостоянства необходимо решить неравенства f(x)>0 и у = f(x) 0:
Получаем, что функция положительна на промежутке (12; + ∞).
Аналогично решив неравенство 3х – 36 2 – 5х. Найдите такое значение величины а, для которого выполняется условие у(а) = у(а + 2).
Решение. Очевидно, что у(а) = а 2 – 5а. Теперь вычислим у(а + 2):
у(а + 2) = (а + 2) 2 – 5(а + 2) = а 2 + 4а + 4 – 5а – 10 = а 2 – а – 6.
Теперь приравняем значения у(а) и у(а + 2):
а 2 – 5а = а 2 – а – 6
а 2 – 5а – а 2 + а = – 6
Убедимся, что мы нашли требуемое значение а:
у(1,5) = 1,5 2 – 5•1,5 = 2,25 – 7,5 = – 5,25
у(1,5 + 2) = у(3,5) = 3,5 2 – 5•3,5 = 12,25 – 17,5 = – 5,25
Растяжение и сжатие графиков функций
Пусть на координатной плоскости есть точка А с координатами (х0; у0). Куда переместится эта точка, если ее ордината (то есть у0) увеличится, например, в два или в три раза? Она отодвинется от оси Ох. Если же ее ордината уменьшится, то точка приблизится к оси. Наконец, если ордината поменяет знак, то точка, изначально, лежащая выше оси, окажется ниже её. Проиллюстрируем это на картинке:
Пусть есть пара функций у(х) и g = k•у(х), где k– какое-то постоянное число (константа), не равная нулю. Примерами таких пар являются:
Посмотрим, как связаны графики таких функций. На рисунке красным цветом показана функция у(х), а синим g = 2у(x):
При любом значении аргумента выполняется условие g(х) = 2у(х). Это значит, что ордината (координата у) каждой точки графика g(х) вдвое больше, чем ордината соответствующей точки графика у(х). В частности, отрезок АА2 вдвое длиннее отрезка АА1:
Аналогично можно записать, что
Таким образом, график g(x) выглядит так, будто бы график у(х) «растянули» в 2 раза. Каждая точка «переезжает» на новое место, сдвигаясь по вертикали. Так, если точка А1 имела координаты (– 6; 2), то при растяжении графика функции она получит координаты (– 6; 4), то есть ее координата у увеличится вдвое. Точка B1 имела координаты (2; – 2), а в графике g(х) занимает позицию (2; – 4).
Убедимся в этом на примере ф-ций у = х 2 и g = 2х 2 :
В общем случае говорят, что график функции g(х) = ky(x) получается растяжением графика у(х) в k раз.
Пример. Функция у(х) задана графически:
Постройте график функции g(х) = 3у(х).
Решение. Каждую точку отодвинем от оси Ох, увеличив координату у точек в 3 раза:
При сжатии графика каждая точка параболы приближается к оси Ох, при этом ордината точек уменьшается вдвое. Так, точка А2 с координатами (3; 9) переходит в точку А1 с координатами (3; 4,5).
Отдельно стоит рассмотреть случай, при котором коэффициент k является отрицательным. В этом случае график отображается симметрично относительно оси Ох. Те точки, которые имели изначально положительную ординату и находились выше Ох, в результате получают отрицательную ординату и оказываются ниже оси Ох. Покажем на рисунке графики ф-ций у = х 2 и у = – х 2 (то есть k =– 1):
Если же, например, коэффициент k = – 2, то надо и растянуть график, и перевернуть его относительно оси Ох. В частности, так выглядит график у = – 2х 2 :
Параллельный перенос графиков функций
Теперь посмотрим, как передвинется отдельная точка на координатной плоскости, если к ее ординате добавить какое-нибудь число. Если это число положительное, то точка поднимется выше, а если отрицательное, то она опустится:
Это означает, что если к какой-нибудь функции добавить некоторое число, то график функции переместится вверх или вниз. Для примера построим графики функций у = х 2 + 2 и у = х 2 – 5:
Параллельный перенос возможен не только в вертикальном, но и в горизонтальном направлении. Для такого перемещения надо изменить абсциссу точки, а не ординату:
Аналогично может сдвинуться не только точка, но и целый график функции. Если вместо аргумента х подставить в ф-цию величину (х +n), то график сместится на n единиц влево.
у(0) = 0 2 = 0 и g(– 3) = g(– 3 + 3) 2 = 0 2 = 0
у(– 1) = (– 1) 2 = 1 и g(– 4) = g(– 4 + 3) 2 = (– 1) 2 = 1
у(– 2) = (– 2) 2 = 4 и g(– 5) = g(– 5 + 3) 2 = (– 2) 2 = 4
Точка А1 сдвинулась влево на 3 единицы и перешла в точку А2. Аналогично точка В1 отобразилась в точку В2.
Пусть в общем случае есть функции у = у(х) и g(x) = у(х +n), где n – некоторое постоянное число. Значение у(х) в точке х0 обозначается как у0. Теперь найдем значение g(x) в точке (х0 – n):
Получили, то же самое значение, что и у у(х). Покажем это на рисунке:
Рассмотрим теперь случай, когда график сдвигается вправо. Для этого из аргумента исходной функции надо вычесть какое-то число. На рисунке показаны графики функций у = 2х и у = 2(х – 4):
Каждая точка исходного графика (например, А1) «переехала» на 4 единицы вправо.
Надо понимать, что иногда один график можно получить из другого в несколько переходов. Пусть надо построить график у = – (х – 4) 2 + 5. Его можно получить из обычной параболы у = х 2 в три шага.
Последний шаг – это построение графика у = – (х – 4) 2 + 5. Его можно получить, подняв предыдущий график на 5 единиц вверх:
Гипербола и обратная пропорциональность
Найдем область определения функции у = 1/х. Ясно, что аргумент не может равняться нулю, так как иначе получим деление на ноль:
При любых других значениях х значение у вычислить можно, а потому областью определения будет промежуток (– ∞; 0)⋃(0;+ ∞).
При положительных значениях аргумента ф-ция также будет положительной:
При отрицательных х величина у будет становиться отрицательной:
Это означает, что график ф-ции будет располагаться в I и III четвертях.
Можно заметить, что чем больше х, тем ближе у к нулю:
И наоборот, чем ближе х к нулю, тем больше у:
При этом у не может равняться нулю. Действительно, дробь равна нулю только тогда, когда ее числитель равен нулю. Однако варьируя х, мы меняем только знаменатель, а в числителе остается единица. Поэтому областью значений функции у = х – 1 является промежуток (– ∞; 0)⋃(0;+ ∞).
Для построения графика найдем некоторые точки графика и занесем их в таблицу. Мы построим две таблицы – одну для положительных х, другую для отрицательных:
Теперь можно посмотреть и на сам график:
Первое, что бросается в глаза – это то, что график не представляет собой единую, непрерывную линию. Он разбит на две ветви, одна из которых располагается в III четверти, а другая – в I четверти. Такой «разрыв» связан с тем, что ноль не входит в область определения ф-ции.
Также можно заметить симметричность графика. Действительно, одна из ветвей является симметричным отображением второй ветви.
Построенный нами график называется гиперболой.
На координатной плоскости есть две прямые линии, к которым гипербола приближается, но при этом он не касается их. Это оси Ох и Оу. Для наглядности покажем их штриховой линией:
В математике подобные линии называют асимптотами функции. Горизонтальная асимптота прямая соответствует линии х = 0, а вертикальная асимптота линии у = 0.
Зная, как выглядит график у = 1/х, мы можем построить и другие, схожие с ним графики для ф-ций у = k/х, где k– это некоторое число. Их можно получить из гиперболы, используя сжатие и растяжение графиков. Если коэффициент k больше единицы, то график «отдаляется» от осей Ох и Оу:
Все эти линии являются примерами гипербол. Если коэффициент k отрицательный, то графики переворачиваются относительно оси Ох и занимают II и IV четверти:
Все приведенные зависимости вида у = k/х называют обратными пропорциональностями.
Примерами обратной пропорциональности являются ф-ции:
Обратная пропорциональность очень часто встречается в жизни. Так, время, затрачиваемое на поездку на автомобиле, обратно пропорционально средней скорости движения. Количество товара, которое можно купить на одну зарплату, обратно пропорционально стоимости этого товара.
Дробно-линейная функция
Теперь рассмотрим несколько более сложные ф-ции, чьи графики, однако, также представляют собой гиперболу. Пусть есть ф-ция вида
Как будет выглядеть ее график? Для ответа на этот вопрос выполним преобразование:
Здесь мы в числителе и знаменателе добавили и сразу вычли слагаемое 2.Этот прием помог нам выделить целую часть из дроби. В результате мы получили ф-цию, график которой можно получить с помощью двух параллельных переносов графика у = 6/х. Сначала график сместится на две единицы вправо:
На следующем шаге график поднимется на единицу вверх:
Стоит обратить внимание, что при таком передвижении гиперболы передвигаются и асимптоты графика гиперболы:
представляет собой дробь, являющуюся отношением двух линейных многочленов, х + 3 и х – 2. В математике подобные ф-ции называют дробно-линейными функциями. В качестве примеров дробно-линейных функций можно привести:
Из любой дробно-линейной функции можно выделить целую часть. Покажем это на нескольких примерах:
Во всех этих случаях график дробно-линейной функции можно построить с помощью двух параллельных переносов гиперболы.
Однако есть одно исключение. Иногда при выделении из дроби целой части дробной части не остается вовсе, то есть линейные полиномы можно сразу сократить. Например:
Графиком таких функций являются прямые горизонтальные линии. Однако на них должна быть одна «исключенная». Действительно, пусть надо построить график ф-ции
Проведя преобразования, получим
то есть у = 2. Однако в знаменателе дроби не может стоять ноль. Если же подставить в дробь х = – 2, то получим деление на ноль:
Поэтому график ф-ции будет выглядеть так:
Итак, по итогам урока мы узнали: