что означает возвести в квадрат
Быстрое возведение чисел от 1 до 100 в квадрат
Вдохновленный этой статьей, решил поделиться с вами способом быстрого возведения в квадрат. Возведение в квадрат более редкая операция, нежели умножение чисел, но под нее существуют довольно интересные правила.
*квадраты до сотни
Для того, чтобы бездумно не возводить в квадрат по формуле все числа, нужно максимально упростить себе задачу следующими правилами.
Правило 1 (отсекает 10 чисел)
Для чисел, оканчивающихся на 0.
Если число заканчивается на 0, умножить его не сложнее, чем однозначное число. Стоит лишь дописать пару нулей.
В таблице отмечены красным.
Правило 2 (отсекает 10 чисел)
Для чисел, оканчивающихся на 5.
Чтобы возвести в квадрат двузначное число, оканчивающееся на 5, нужно умножить первую цифру (x) на (x+1) и дописать к результату “25”.
В таблице отмечены зеленым.
Правило 3 (отсекает 8 чисел)
Для чисел от 40 до 50.
Достаточно трудно, верно? Давайте разберем пример:
В таблице отмечены светло-оранжевым.
Правило 4 (отсекает 8 чисел)
Для чисел от 50 до 60.
Тоже достаточно трудно для восприятия. Давайте разберем пример:
В таблице отмечены темно-оранжевым.
Правило 5 (отсекает 8 чисел)
Для чисел от 90 до 100.
Похоже на правило 3, но с другими коэффициентами. Давайте разберем пример:
В таблице отмечены темно-темно-оранжевым.
Правило №6 (отсекает 32 числа)
Необходимо запомнить квадраты чисел до 40. Звучит дико и трудно, но на самом деле до 20 большинство людей знают квадраты. 25, 30, 35 и 40 поддаются формулам. И остается лишь 16 пар чисел. Их уже можно запомнить при помощи мнемоники (о которой я также хочу рассказать позднее) или любыми другими способами. Как таблицу умножения 🙂
В таблице отмечены синим.
Вы можете запомнить все правила, а можете запомнить выборочно, в любом случае все числа от 1 до 100 подчиняются двум формулам. Правила же помогут, не используя эти формулы, быстрее посчитать больше 70% вариантов. Вот эти две формулы:
Формулы (осталось 24 числа)
Для чисел от 25 до 50
Для чисел от 50 до 100
Конечно не стоит забывать про обычную формулу разложения квадрата суммы (частный случай бинома Ньютона):
UPDATE
Произведения чисел, близких к 100, и, в частности, их квадраты, также можно вычислять по принципу «недостатков до 100»:
Словами: из первого числа вычитаем «недостаток» второго до сотни и приписываем двузначное произведение «недостатков».
Для квадратов, соответственно, еще проще.
Возведение в квадрат, возможно, не самая полезная в хозяйстве вещь. Не сразу вспомнишь случай, когда может понадобиться квадрат числа. Но умение быстро оперировать числами, применять подходящие правила под каждое из чисел отлично развивает память и «вычислительные способности» вашего мозга.
Кстати, думаю, все читатели хабры знают, что 64^2 = 4096, а 32^2 = 1024.
Многие квадраты чисел запоминаются на ассоциативном уровне. Например, я легко запомнил 88^2 = 7744, из-за одинаковых чисел. У каждого наверняка найдутся свои особенности.
Две уникальные формулы я впервые нашел в книге «13 steps to mentalism», которая мало связана с математикой. Дело в том, что раньше (возможно, и сейчас) уникальные вычислительные способности были одним из номеров в сценической магии: фокусник рассказывал байку о том, как он получил сверхспособности и в доказательство этого моментально возводит числа до сотни в квадрат. В книге так же указаны способы возведения в куб, способы вычитания корней и кубических корней.
Если тема быстрого счета интересна — буду писать еще.
Замечания об ошибках и правки прошу писать в лс, заранее спасибо.
Таблица квадратов натуральных чисел от 1 до 100
Таблица квадратов и таблица степеней.
Таблица квадратов представляет собой числа, которые возведены во вторую степень. Она используется для упрощения расчетов при возведении чисел во вторую степень.
Как пользоваться таблицей квадратов по схеме:
Чтобы возвести число в квадрат, нужно выбрать десятку и единицу числа, которое необходимо возвести во вторую степень, и на их пересечении будет число, которое получается за счет умножения этого числа на себя.
Например: рассмотрим на картинке ниже число 1849. Оно получилось за счет умножения числа 43 на 43 (43 во второй степени), в котором “4”- это десятка, а “3” – единица.
Или другой пример: число 4356 получилось за счет умножения числа 66 на 66 (66 во второй степени), в котором “6” сбоку – это десятка, а “6” сверху – единица.
Таблица квадратов:
Вторую степень называют “квадратом числа”. При этом умножение числа самого на себя происходит один раз (a · a).
Возведение в степень:
Возведение в степень – алгебраическое действие, при котором происходит умножение числа самого на себя столько раз, сколько указано в показателе.
Пример: 3 2 (три во второй степени) = 3 · 3 = 9, или
3 3 (три в третьей степени) = 3 · 3 · 3 = 27.
Таблица степеней:
Свойства степеней:
Произведение степеней. При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
6 2 · 6 4 = 6 2+4 = 6 6
Частное степеней. При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.
6 4 / 6 2 = 6 4 – 2 = 6 2
Возведение степени в степень. При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.
(6 4 ) 6 = 6 4 · 6 = 6 24
Степень произведения. При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.
Степень частного (дроби). Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй. При возведении в степень дроби нужно возвести в степень и числитель, и знаменатель.
Примечание: © Фото https://www.pexels.com, https://pixabay.com
Мировая экономика
Справочники
Востребованные технологии
Поиск технологий
О чём данный сайт?
Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.
Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.
Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!
Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.
О Второй индустриализации
Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.
Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.
Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.
Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.
Что означает возвести в квадрат
Введение.
Математика – очень древняя наука. Многие понятия, правила, законы, формулы уже известны давно, и открыть что-то новое, просто невозможно. Всё равно на уроке математики мы открываем для себя новые знания. Из года в год наши знания увеличиваются. Например, при изучении темы «Степень» узнали, что произведение одинаковых множителей можно записать, как степень данного числа. Так мы познакомились с квадратом и кубом числа.
Устно возводить в квадрат однозначное число легко, для этого надо знать всего лишь таблицу умножения. А как устно возвести в квадрат двузначное число, меня очень заинтересовало.
Умея это выполнять, мы откажемся от письменного умножения. Конечно, можно посмотреть в таблицу квадратов, но она не всегда под руками.
Цель проекта: Поиск приёмов быстрого возведения чисел в квадрат.
Задачи: 1) Познакомиться с историей возникновения степени числа.
2) Изучить приёмы быстрого возведения чисел в квадрат.
3) Вывести свой способ возведения чисел в квадрат.
4) Выбрать из всех самый оптимальный способ.
Гипотеза: Применение приёмов быстрого возведения чисел в квадрат облегчает вычисления, повышает вычислительную культуру учащихся. Возводить в квадрат легко и просто.
Объект исследования: приёмы быстрого возведения чисел в квадрат.
Методы исследования: Анализ литературы. Поисковый метод. Сравнение.
Актуальность проекта: Во все времена умение производить в уме различные вычисления вызывает восхищение, это отличное упражнение, позволяющее поддержать мозг в состоянии «боевой готовности»[1]. Освоение способов устного возведения чисел в квадрат усиливает интерес к математике, развивает внимание, мышление, память, эрудицию и математические способности.
История возникновения квадрата числа.
Сложение, вычитание, умножение и деление идут первыми в списке арифметических действий. У математиков не сразу сложилось представление о возведении в степень как о самостоятельной операции, хотя в самых древних математических текстах Древнего Египта и Междуречья встречаются задачи на вычисление степеней[5].
В своей знаменитой «Арифметике» Диофант Александрийский [2] описывает первые натуральные степени чисел так:
«Все числа… состоят из некоторого количества единиц; ясно, что они продолжаются, увеличиваясь до бесконечности. …среди них находятся: квадраты, получающиеся от умножения некоторого числа самого на себя; это же число называется стороной квадрата, затем кубы, получающиеся от умножения квадратов на их сторону, далее квадрато-квадраты — от умножения квадратов самих на себя, далее квадрато-кубы, получающиеся от умножения квадрата на куб его стороны, далее кубо-кубы — от умножения кубов самих на себя».
Прошло много времени и у Рене Декарта[3] в его «Геометрии» (1637) мы находим современное обозначение степеней а?, а. Любопытно, что Декарт считал, что а*а не занимает больше места, чем а 2 и не пользовался этим обозначением при записи произведения двух одинаковых множителей.
Немецкий ученый Лейбниц[4] считал, что упор должен быть сделан на необходимости применения символики для всех записей произведений одинаковых множителей и применял знак а 2 [5].
Приёмы быстрого возведения чисел в квадрат.
Учись считать быстро! Для овладения этим навыком любому человеку нужны:
Давайте познакомимся с некоторыми приёмами возведения в квадрат двузначных чисел, которые выполняются почти мгновенно[1].
Возведение в квадрат числа, оканчивающегося на 5.
Чтобы возвести в квадрат число, оканчивающееся цифрой 5, надо умножить количество его десятков на следующее за ним число и приписать к произведению 25.
Возведение в квадрат числа, первая цифра которого равна 5.
Чтобы возвести в квадрат двузначное число, первая цифра которого равна 5, надо к 25 прибавить число единиц и приписать квадрат числа единиц.
Возведение в квадрат числа, оканчивающегося на 1.
При возведении в квадрат числа, оканчивающегося на 1, нужно округлить число до десятков, возвести новое число в квадрат, и прибавить к этому квадрату исходное число и число, полученное при округлении.
Возведение в квадрат числа, оканчивающегося на 9.
Возведение в квадрат числа, оканчивающегося на 4.
При возведении в квадрат числа, оканчивающегося на 4, нужно заменить цифру 4 на 5, возвести новое число в квадрат и из этого квадрата вычесть исходное число и число, полученное заменой 4 на 5.
Возведение в квадрат числа, оканчивающегося на 6.
При возведении в квадрат числа, оканчивающегося на 6, нужно заменить цифру 6 на 5, возвести новое число в квадрат, и прибавить к этому квадрату исходное число и число, полученное заменой 6 на 5.
Возведение в квадрат числа, близкого к 50.
а) Для чисел от 40 до 50 (числа пятого десятка). Опорное число – 15.
1) 44 2 = (15 + 4) · 100 + (50 – 44) 2 = 1900 + 36 = 1936.
2) 43 2 = 18 · 100 + 7 2 = 1800 + 49 = 1849.
3) 48 2 = 2300 + 4 = 2304.
б) Для чисел от 25 до 40 и до 50. Опорное число – 25.
1) 37 2 = (37 – 25) · 100 + (50 – 37) 2 = 12 · 100 + 13 2 = 1200 + 169 = 1369.
Для этого приёма надо знать квадраты чисел от 1 до 25.
2) 28 2 = 3 · 100 + 22 2 = 300 + 484 = 784.
3) 46 2 = 2100 + 16 = 2116.
4) 39 2 = 1400 + 121 = 1521.
в) Для чисел от 50 до 60 (числа шестого десятка). Опорное число – 25.
1) 57 2 = (25 +7) · 100 + (57 – 50) 2 = 32 · 100 + 7 2 = 3200 + 49 = 3249.
2) 52 2 = 2700 + 4 = 2704.
г) Для чисел от 50 до 60 и до 75. Опорное слово – 25.
Для этого приёма надо знать квадраты чисел от 1 до 25.
1) 58 2 = (58 – 25) · 100 + (58 – 50) 2 = 33 · 100 + 8 2 = 3300 + 64 = 3364.
2) 71 2 = 46 · 100 + 21 2 = 4600 + 441 = 5041.
Возведение в квадрат числа, близкого к 100.
97 2 = (97 – 3) · 100 + 3 2 = 9400 + 9 = 9409, где 3 – дополнение 97 до 100.
94 2 = (94 – 6) · 100 + 6 2 = 8800 + 36 = 8836.
Возведение в квадрат любого двузначного числа.
38 2 = (30 + 8) 2 = (30 + 8) · (30 + 8) = (30 + 8) · 30 + (30 + 8) · 8 = 30 · 30 + 8 · 30 +
+ 30 · 8 + 8 · 8 = 3 · 3 · 100 + 3 · 8 · 10 + 3 · 8 · 10 + 8 · 8 = 3 2 · 100 + 3 · 8 · 2 · 10 + + 8 2 = 9 · 100 + 48 · 10 + 64 = 964 + 480 = 1444.
Можно оформить решение так:
27 2 = 449 + 280 = 729.
84 2 = 6416 + 640 = 7056.
42 2 = 42 · 42 = (42 + 2) · 40 + 2 2 = 44 · 40 + 4 = 1760 + 4 = 1764
78 2 = (78 + 8) · 70 + 64 = 86 · 70 + 64 = 6020 + 64 = 6084.
в) Метод «округления».
1) Для чисел, у которых цифра единиц больше 5:
47 2 = 47 · 47 = 50 · (47 – 3) + 3 2 = 50 · 44 + 9 = 2200 + 9 = 2209.
26 2 = 30 · 22 + 16 = 660 + 16 = 676.
1) Для чисел, у которых цифра единиц меньше 5:
73 2 = 73 · 73 = 70 · (73 + 3) + 3 2 = 70 · 76 + 9 = 5320 + 9 = 5329.
82 2 = 80 · 84 + 4 = 6720 + 4 = 6724.
г) Метод замены квадрата числа произведением.
29 2 = (29 – 9) · (29 + 9) + 9 2 = 20 · 38 + 81 = 760 + 81 = 841.
86 2 = (86 – 6) · (86 + 6) + 6 2 = 80 · 92 + 36 = 7360 + 36 = 7396.
54 2 = 50 · 58 + 16 = 2900 + 16 = 2916.
д) Метод понижения числа на единицу.
28 2 = (28 – 1) 2 + 28 + (28 – 1) = 27 2 + 28 + 27 = 729 + 55 = 784.
56 2 = 55 2 + 56 + 55 = 3025 + 111 = 3136.
Минус этого приёма в том, что квадрат данного двузначного числа выражаем через квадрат числа на единицу меньше, который надо либо вычислять, либо снова понижать, и так до бесконечности.
Возведение в квадрат любого двузначного числа по методу Алины.
Приёмов возведения двузначных чисел в квадрат много и все они разные. Для каждой группы чисел надо знать своё правило, а удержать все правила в уме иногда невозможно.
Собирая материал для проекта, мне захотелось вывести свой приём быстрого возведения двузначного числа в квадрат.
Очень понравился приём возведения в квадрат чисел, оканчивающихся на 5. Он быстрый и понятный. А можно ли этот приём применить для любого числа? Изучая литературу, я нигде этого способа не увидела. Применяя его для любых двузначных чисел, вот что у меня получилось.
Напомню: 35 2 = 3 · (3 + 1) · 100 + 5 2 = 1200 + 25 = 1225.
Возведём по этому способу в квадрат число 36.
Мы знаем, что 36 2 = 1296.
3 · (3 + 1) · 100 + 6 2 = 1200 + 36 = 1236, но 1236 1296. Число 1236 2 = 3 · 4 · 100 + 6 2 + 30 · 2 = 1236 + 60 = 1296.
Рассмотрим другие примеры.
56 2 = 5 · 6 · 100 + 6 2 + 50 · 2 = 3000 + 36 + 100 = 3036 + 100 = 3136.
46 2 = 2036 + 40 · 2 = 2036 + 80 = 2116.
Я много раз возводила числа в квадрат и увидела такую закономерность:
Пусть, например, надо возвести в квадрат число 39. Цифра 9 стоит на четвёртом месте от цифры 5, число 4 удваиваем, это будет 8, а теперь применяем приём:
39 2 = 3 · 4 · 100 + 9 2 + 30 · 8 = 1200 + 81 + 240 = 1281 + 240 = 1521.
240 можно представить так: 30 · 2 · 4, то есть десятки числа удвоить и умножить на номер места цифры единиц от цифры 5.
73 2 = 5609 – применяя приём возведения в квадрат для числа, оканчивающегося на 5. Но 5329 ≠ 5609.
х = 280, где 280 = 70 · 2 · 2, первая двойка удваивает число десятков в числе; вторая двойка обозначает номер места цифры 3 от цифры 5.
Эврика! Способ найден!
73 2 = 7 · 8 ·100 + 3 · 3 – 70 · 2 · 2 = 5609 – 280 = 5329.
Можно оформить решение и так:
Какой приём возведения двузначного числа в квадрат наиболее простой? Для себя я выбрала два приёма. Мне они оба понятные и несложные.
Какой приём выберите вы, думайте сами. Вам решать.
Заключение.
Владение приёмами быстрого возведения двузначного числа в квадрат даёт возможность выбрать в каждом отдельном случае наиболее рациональные и эффективные пути вычислений, что приводит:
Считаю, что возводить двузначные числа в квадрат легко и просто. Гипотеза доказана.
Умение считать в уме остаётся полезным навыком для современного человека, несмотря на то, что он владеет всевозможными устройствами, способными считать за него.
Возможность обходиться без калькулятора и в нужный момент оперативно решить поставленную арифметическую задачу – это здорово[1]!
Урок 7. Возведение в квадрат в уме
Умение считать в уме квадраты чисел может пригодиться в разных жизненных ситуациях, например, для быстрой оценки инвестиционных сделок, для подсчета площадей и объемов, а также во многих других случаях. Кроме того, умение считать квадраты в уме может служить демонстрацией ваших интеллектуальных способностей.
В этом уроке разобраны методики и алгоритмы, позволяющие научиться этому навыку.
Квадрат суммы и квадрат разности
Одним из самых простых способов возведения двузначных чисел в квадрат является методика, основанная на использовании формул квадрата суммы и квадрата разности:
Для использования этого метода необходимо разложить двузначное число на сумму числа кратного 10 и числа меньше 10. Например:
Практически все методики возведения в квадрат (которые описаны ниже) основываются на формулах квадрата суммы и квадрата разности. Эти формулы позволили выделить ряд алгоритмов упрощающих возведение в квадрат в некоторых частных случаях.
Квадрат близкий к известному квадрату
Если число, возводимое в квадрат, находится близко к числу, квадрат которого мы знаем, можно использовать одну из четырех методик для упрощенного счета в уме:
На 1 больше:
Методика: к квадрату числа на единицу меньше прибавляем само число и число на единицу меньше.
На 1 меньше:
Методика: из квадрата числа на единицу больше вычитаем само число и число на единицу больше.
На 2 больше
Методика: к квадрату числа на 2 меньше прибавляем удвоенную сумму самого числа и числа на 2 меньше.
На 2 меньше
Методика: из квадрата числа на 2 больше вычитаем удвоенную сумму самого числа и числа на 2 больше.
Все эти методики можно легко доказать, выведя алгоритмы из формул квадрата суммы и квадрата разности (о которых сказано выше).
Квадрат чисел, заканчивающихся на 5
Чтобы возвести в квадрат числа, заканчивающиеся на 5. Алгоритм прост. Число до последней пятерки, умножаем на это же число плюс единица. К оставшемуся числу приписываем 25.
Это верно и для более сложных примеров:
Квадрат чисел близких к 50
Считать квадрат чисел, которые находятся в диапазоне от 40 до 60, можно очень простым способом. Алгоритм таков: к 25 прибавляем (или вычитаем) столько, насколько число больше (или меньше) 50. Умножаем эту сумму (или разность) на 100. К этому произведению добавляем квадрат разности числа, возводимого в квадрат, и пятидесяти. Посмотрите работу алгоритма на примерах:
Квадрат трехзначных чисел
Возведение в квадрат трехзначных чисел может быть осуществлено при помощи одной из формул сокращенного умножения:
Нельзя сказать, что этот способ является удобным для устного счета, но в особо сложных случаях его можно взять на вооружение:
436 2 = (400+30+6) 2 = 400 2 + 30 2 + 6 2 + 2*400*30 + 2*400*6 + 2*30*6 = 160 000 + 900 + 36 + 24 000 + 4 800 + 360 = 190 096
Тренировка
Если вы хотите прокачать свои умения по теме данного урока, можете использовать следующую игру. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что числа каждый раз разные.
Перед тем как начать игру, рекомендуем зарегистрироваться, чтобы результат был сохранен в вашей истории, и вы смогли бы видеть собственный прогресс.
Напоминаем, что для полноценной работы сайта вам необходимо включить cookies, javascript и iframe. Если вы ввидите это сообщение в течение долгого времени, значит настройки вашего браузера не позволяют нашему порталу полноценно работать.