Эффект коанда что это такое
Занимательная физика: эффект Коандэ в закладки 8
Физическое явление, названное в честь румынского учёного Анри Коандэ. Коандэ в 1932 году обнаружил, что струя жидкости, вытекающая из сопла, стремится отклониться по направлению к стенке и при определенных условиях прилипает к ней.
Это объясняется тем, что боковая стенка препятствует свободному поступлению воздуха с одной стороны струи, создавая вихрь в зоне пониженного давления. Наглядно объясняет, почему мы проливаем чай, когда переливаем его из одного стакана в другой, или когда струя из носика чайника при небольшом наклоне норовит отклониться от вертикали и прилипает к носику с внешней стороны.
Тогда чай вместо чашки попадает на скатерть (поэтому, этот эффект ещё называют “эффектом чайника”).
На этом принципе работают клиновоздушные двигатели. Вот видео:
В конструкции клиновоздушного двигателя проблема эффективности на различной высоте решается следующим образом: вместо одной точки выхлопа в виде небольшого отверстия в центре сопла используется клиновидный выступ, вокруг которого устанавливается ряд камер сгорания. Клин формирует одну сторону виртуального сопла, в то время как другая часть формируется проходящим потоком воздуха в ходе полета. Этим объясняется его первоначальное название «двигатель аэроспайк» (англ. Aerospike engine, «воздушно-клинный двигатель»).
Основная идея такой конструкции состоит в том, что на низкой высоте атмосферное давление прижимает отработанный газ к выступающему клину. Затем рециркуляция в основании клина поднимает давление до значения окружающей атмосферы. В силу такой конструкции, тяга не достигает предельно возможных значений, но также и не претерпевает значительного падения, которое происходит в нижней части традиционного сопла из-за частичного вакуума. По мере того, как аппарат достигает бо́льшей высоты, сдерживающее реактивную струю двигателя окружающее давление уменьшается, при этом падает давление на верхнюю часть двигателя, что сохраняет его эффективность неизменной. Более того, несмотря на то, что окружающее давление падает практически до нуля, зона рециркуляции сохраняет давление на основание клина до величин, сравнимых с давлением атмосферы у поверхности Земли, в то время как верхняя часть клина находится практически в вакууме. Это создаёт дополнительную тягу с ростом высоты, компенсируя падение окружающего давления. В целом, эффект сравним с традиционным соплом, которое имеет способность расширяться с увеличением высоты. В теории клиновоздушный двигатель несколько менее эффективен по сравнению с традиционным соплом, сконструированным для данной высоты, и по сравнению с ним, более эффективен для любой другой высоты.
Недостатком такой конструкции является большой вес центрального выступа и дополнительные требования по охлаждению из-за бо́льшей поверхности, подверженной нагреву. Также большая площадь охлаждаемой поверхности может уменьшить теоретические уровни давления на сопло. Дополнительным отрицательным фактором является относительно плохая производительность такой системы при скоростях 1-3 М. В данном случае воздушный поток сзади летательного аппарата имеет уменьшенное давление, что снижает тягу.
Клиновоздушные двигатели изучались на протяжении длительного времени в качестве основного варианта для одноступенчатых космических систем (ОКС, англ. Single-Stage-To-Orbit, SSTO), то есть ракетных систем, использующих для доставки полезной нагрузки на орбиту только одну ступень. Двигатели этого типа были серьёзным претендентом на использование в качестве основных двигателей на МТКК «Спейс шаттл» при его создании. Однако на 2012 год, ни одного двигателя этого типа не используется и не производится. Наиболее удачные варианты находятся в стадии доводочных работ.
masterok
Мастерок.жж.рф
Хочу все знать
Физическое явление, названное в честь румынского учёного Анри Коандэ. Коандэ в 1932 году обнаружил, что струя жидкости, вытекающая из сопла, стремится отклониться по направлению к стенке и при определенных условиях прилипает к ней. Это объясняется тем, что боковая стенка препятствует свободному поступлению воздуха с одной стороны струи, создавая вихрь в зоне пониженного давления. Наглядно объясняет, почему мы проливаем чай, когда переливаем его из одного стакана в другой, или когда струя из носика чайника при небольшом наклоне норовит отклониться от вертикали и прилипает к носику с внешней стороны.
Тогда чай вместо чашки попадает на скатерть (поэтому, этот эффект ещё называют «эффектом чайника»).
На этом принципе работают клиновоздушные двигатели. Вот видео:
В конструкции клиновоздушного двигателя проблема эффективности на различной высоте решается следующим образом: вместо одной точки выхлопа в виде небольшого отверстия в центре сопла используется клиновидный выступ, вокруг которого устанавливается ряд камер сгорания. Клин формирует одну сторону виртуального сопла, в то время как другая часть формируется проходящим потоком воздуха в ходе полета. Этим объясняется его первоначальное название «двигатель аэроспайк» (англ. Aerospike engine, «воздушно-клинный двигатель»).
Основная идея такой конструкции состоит в том, что на низкой высоте атмосферное давление прижимает отработанный газ к выступающему клину. Затем рециркуляция в основании клина поднимает давление до значения окружающей атмосферы. В силу такой конструкции, тяга не достигает предельно возможных значений, но также и не претерпевает значительного падения, которое происходит в нижней части традиционного сопла из-за частичного вакуума. По мере того, как аппарат достигает бо́льшей высоты, сдерживающее реактивную струю двигателя окружающее давление уменьшается, при этом падает давление на верхнюю часть двигателя, что сохраняет его эффективность неизменной. Более того, несмотря на то, что окружающее давление падает практически до нуля, зона рециркуляции сохраняет давление на основание клина до величин, сравнимых с давлением атмосферы у поверхности Земли, в то время как верхняя часть клина находится практически в вакууме. Это создаёт дополнительную тягу с ростом высоты, компенсируя падение окружающего давления. В целом, эффект сравним с традиционным соплом, которое имеет способность расширяться с увеличением высоты. В теории клиновоздушный двигатель несколько менее эффективен по сравнению с традиционным соплом, сконструированным для данной высоты, и по сравнению с ним, более эффективен для любой другой высоты.
Недостатком такой конструкции является большой вес центрального выступа и дополнительные требования по охлаждению из-за бо́льшей поверхности, подверженной нагреву. Также большая площадь охлаждаемой поверхности может уменьшить теоретические уровни давления на сопло. Дополнительным отрицательным фактором является относительно плохая производительность такой системы при скоростях 1-3 М. В данном случае воздушный поток сзади летательного аппарата имеет уменьшенное давление, что снижает тягу.
Клиновоздушные двигатели изучались на протяжении длительного времени в качестве основного варианта для одноступенчатых космических систем (ОКС, англ. Single-Stage-To-Orbit, SSTO), то есть ракетных систем, использующих для доставки полезной нагрузки на орбиту только одну ступень. Двигатели этого типа были серьёзным претендентом на использование в качестве основных двигателей на МТКК «Спейс шаттл» при его создании. Однако на 2012 год, ни одного двигателя этого типа не используется и не производится. Наиболее удачные варианты находятся в стадии доводочных работ.
Вот еще некоторые интересные эффекты: вспомним пожалуй Эффект Джанибекова или вот например Эффект Линденфроста и Эффект Мпембы. Вот такое интересное явление, как Капля «принца Руперта» и эффект Магнуса
Использование эффекта Коанда в летательных аппаратах
Содержание
1. Введение
Анри Коа́ндэ — румынский учёный в области аэродинамики, первооткрыватель эффекта Коанды. Один из пионеров авиации, создатель одного из первых в мире проектов самолёта на реактивной тяге, Coandă-1910.
Рисунок 1 – Coandă-1910
Эффект Коанды — физическое явление, названное в честь румынского учѐного, который в 1932 году обнаружил, что струя жидкости, вытекающая из сопла, стремится отклониться по направлению к стенке и при определенных условиях прилипает к ней.
Объяснение эффекта заключается в том, что твердая поверхность препятствует свободному поступлению воздуха к струе, в результате чего создаются завихрения в зоне пониженного давления возле поверхности. Струя прилипает за счет внешнего давления и далее движется по поверхности.
Кроме того, атмосферное давление, действующее на противоположную сторону выбранной поверхности, создает заметную силу. Ее с успехом можно использовать в качестве подъемной.
Эффект Коанда проявляется не всегда. Для стабильного результата нужно соблюдать определенные параметры щели, из которой вырывается струя воды или газа, и сопла. Также значительно влияние оказывает форма поверхности и качество ее обработки. Немаловажно и расположение щели.
2. Обнаружение эффекта и его развитие
Аэродинамический эффект был открыт в 1910 году в ходе экспериментов над новым профилем крыла первого реактивного самолета, известного как «the Coandã-1910».
Особенность самолета Коанда: компрессор, работая от 4-цилиндрового 50-сильного бензинового мотора Clerget, нагнетал воздух в две камеры сгорания, расположенные по бокам фюзеляжа, в которых воздух смешивался с топливом и сгорал, создавая реактивную тягу. Коанда запатентовал эту технологию во Франции в 1910 году и в Великобритании и Швейцарии в 1911 году.
Первый полет реактивного самолета Coandă-1910 состоялся осенью 1910 года на аэродроме под Парижем. Конструктор внимательно осмотрел аппарат и лег в желоб фюзеляжа. Загудел мотор, и из реактивных сопел вырвались языки пламени. Для самозащиты конструктор прикрепил к фюзеляжу металлические щитки, отбрасывающие пламя в сторону, однако после увеличения скорости разбега щитки не просто перестали отражать огонь от фюзеляжа, а, наоборот, «присасывали» огонь к фанерным бокам. Коанда отвлекся и не заметил, как самолет приближается к амбару. Инженер рванул рычаг управления на себя, и самолет оторвался от земли. Но без достаточной для подъема скорости аппарат перевалил через амбар и врезался носом в землю. Коанда успел выскочить из кабины, отделавшись несерьезными ранениями.
Сначала аэродинамики восприняли открытие скептически. Немецкие ученые, изучив «эффект Коанда» в своих лабораториях, пришли к следующему выводу: «…эксперименты Коанда не воспроизводятся и потому не представляют интереса».
Прошло много лет, пока была раскрыта тайна этого «эффекта». Он не удавался на примитивных моделях. Возникал только при строго определенном соотношении размера щели и диаметра сопла. Огромное влияние оказывали поверхность и форма поверхности.
В межвоенное время наш герой не прекращал изобретать и странствовать. Ученый работал над проектами аэросаней и аэродинамического поезда.
Сейчас «эффект Коанда» используется при создании многих движущихся аппаратов. Благодаря ему повышается тяга реактивных двигателей и движителей современных судов, он может быть применен для торможения самолетов при посадке, для движения их по земле задним ходом, для глушения шума реактивных двигателей.
Используя упомянутый «эффект», коллектив Генерального конструктора знаменитых «Анов» Олега Константиновича Антонова создал грузовой самолет Ан-72 со специальными реактивными двигателями. У самолета очень короткий разбег и пробег, крутая траектория набора высоты и снижения, что достигается многими усовершенствованиями механизации крыла и тем, что выхлопные газы из двигателя, проходя над поверхностью крыла, создают дополнительную двигательную силу. Это — «эффект Коанда» в действии.
К сожалению, при первой публичной апробации самолет потерпел крушение, но эта неудача дала рождение многим техническим решениям. Коанд установил на фанерный фюзеляж своего реактивного самолета металлические отражатели, которые должны были защитить его от реактивных сопл. Однако пламя, вырывавшееся их сопла, не отражалось, а прилипало к металлу.
В 1938 году А. Коанда получил патент на «струйный зонт», в работе которого нашел практическое применение описываемый эффект (рис. 2). По своей сути, это – свернутое в кольцо крыло самолета. В верхней части имеется несколько отверстий, через которые с большой скоростью вырываются газовые струи. Струи обтекают выпуклую поверхность «зонта» и создают над ним пониженное давление. Возникает подъемная сила, направленная вертикально вверх.
Рисунок 2 – «Струйный зонт» А. Коанда
Авиаконструкторы многих стран разрабатывали конструкции крыла и фюзеляжей, усиливающих действие эффекта Коанда, обеспечивая увеличение подъемной силы самолета.
3. Применение эффекта Коанда в летательных аппаратах
С 1940 года в США начались исследования по применению эффекта Коанда в летательных аппаратах. Результатом многочисленных экспериментов стала система компенсации реактивного момента от несущего винта и управления вертолетом по рысканью NOTAR (No Tail Rotor – без хвостового винта) авиастроительной компании «McDonnell Douglas». В настоящее время NOTAR применяется вместо рулевого винта в системе управления вертолетов MD 520N, MD 600N, MD Explorer. В состав входит вентилятор (устанавливается в хвосте фюзеляжа) и воздушные сопла на хвостовой балке. Солпа действуют на пограничный слой, и за счет появления эффекта Коанда поток воздуха отклоняется в сторону. Таким образом происходит компенсация реактивного момента. Также на балке устанавливается управляемое реактивное воздушное сопло и кили, которые применяют для управления по рысканью.
Ясно, что в NOTAR эффект Коанда используется не для увеличения подъемной силы крыла, а для управления. Однако управляющая сила возникает по той же самой причине – из-за того, что воздушный поток обтекает профиль несимметрично.
Рисунок 3 – MD 520N
Для увеличения подъемной силы эффект используется в нескольких проектах самолетов – QSRA (США, экспериментальный), Boeing YC-14 (США, опытный военно-транспортный самолет). Boeing C-14 впервые поднялся в воздух 9 августа 1976 года и сразу продемонстрировал превосходные летные характеристики. В конструкции использовался обдув верхней поверхности крыла реактивной струей двух двигателей, установленных на крыле в гондолах, далеко выдвинутых вперед от передней кромки крыла. При отклоненных предкрылках и закрылках коандовского типа выхлопная струя безотрывно обтекая верхнюю поверхность крыла и закрылка,отклоняется вниз, тем самым увеличения подъемную силу.
В России эффект Коанда успешно применяется на военно-транспортных самолетах с укороченными взлетом и посадкой – Ан-72 и Ан-74.
И Ан-72, и Ан-74 внешне выглядят необычно, поскольку двигатели расположены сверху крыла, а мотогондола выдвинута вперед (рис. 4). Реактивная струя из сопла двигателей при отклоненных предкрылках и закрылках стекает без отрыва по крылу и закрылку, создавая над ними пониженное давление. Увеличивается разность давлений снизу и сверху, что приводит к росту подъемной силы.
Интересно, что вынос двигателей на крыло оказался удобнее и с других точек зрения. Например, при взлете и посадке в двигатели практически не попадают посторонние предметы. Кроме того, крыло экранирует реактивные струи, поэтому уровень шума самолетов оказывается существенно ниже.
В середине 1950-х годов канадская авиастроительная компания Avro Aircraft вела в интересах ВВС США разработку летательного аппарата под шифром «Проект 1794». Он имел дискообразную форму, а летать должен был именно благодаря эффекту Коанда. В основе аппарата был двигатель с ротором, создающим подъемную силу, и компрессорами для создания реактивной тяги. Создаваемые двигателем реактивные струи обтекали куполообразный корпус, что должно было создавать дополнительную подъемную силу, устойчивость «летающей тарелки» и возможность набирать большую скорость. Из-за технической сложности проект закрылся в 1961 году.
Рисунок 5 – Проект 1794
Машины от AESIR также работают с помощью эффекта Коанда.В данном случае струя прилипает к закруглённой внешней поверхности корпуса. При этом на них создается разряжение, увлекающее «НЛО» вверх. Раздельное регулирование потоков воздуха у разных секторов «тарелок» позволяет им наклоняться и менять курс.
Рисунок 6 – Британских «НЛО»
Учѐные и инженеры из Санкт-Петербургского государственного морского технического университета разработали пилотируемый аппарат «Blue Space» (рис. 7), использующий эффект Коанда для перемещения под водой. Схема релизации эффекта «Blue Space» Коанда на подводном велосипеде Эффект Коандада заключается в том, что если из плоской щели выдувать на выпуклую поверхность по касательной струю воздуха или воды, то эта струя прилипает к поверхности на относительно большом расстоянии от щели. При этом на самой поверхности возникает разрежение или тяга.
Рисунок 7 – Blue Space
Так как аэро и гидродинамики работают по одним и тем же законам, но с некоторыми приближениями, то эффект Коанда успешно перекочевал и в «Формулу-1».
С эффектом Коанда сейчас работает подавляющая часть пелотона. Но это весьма модифицированные системы, объединившие в себе задумку «Макларена» и оригинальный выхлопной тоннель «Феррари», сделавший возможным открытые снаружи нижние тоннели для разделения потоков. Это «Форс-Индия», «Торо Россо», «Уильямс», «Катерхэм» и «Заубер», а в последних гонках – «Мерседес» и «Лотус».
На фотографии McLaren MP4-28 2013 года наглядно показано направление воздушного потока: понтон «присасывает» потоки воздуха и направляет их на заднюю подвеску. Это позволяет увеличить прижимную силу в задней части машины.
Рисунок 8 – McLaren MP4-28
В болиде Red Bull RB8 струя горячего отработанного воздуха направляется в «нужное» место в задней части болида, используя эффект Коанда, который помогает направить воздух вниз и вдоль стенок диффузора, невзирая на то, что выхлопные газы выходят под углом вверх.
Рисунок 9 – Red Bull RB8
4. Вывод
Таким образом, сфера применения простого эффекта, открытого А. Коанда, оказалась весьма широкой. Помимо использования в летательных аппаратах, сейчас эффект применяется также в системах кондиционирования и вентиляции, в струйной пневмоавтоматике, в подводных конструкциях и т.п.
Мне также хотелось бы отметить,что в честь выдающегося ученого,первооткрывателя эффекта Коанда, свое название получили Международный аэропорт имени Анри Коанды в городе Бухарест и почтовая марка.
ПРИМЕНЕНИЕ ЭФФЕКТА КОАНДА. Часть 1. АВИАЦИЯ
Фундаментальные теоретические и экспериментальные исследования эффекта Коанда, начатые с конца 30-х годов и продолженные в послевоенный период, позволили установить его основные черты, важнейшей из которых оказалась возможность поворота струи на большие углы.
Аэродинамический эффект был открыт в 1910 году в ходе экспериментов над новым профилем крыла первого реактивного самолета, известного как «the Coandã-1910» (рис.1). К сожалению, при первой публичной апробации самолет потерпел крушение, но эта неудача дала рождение многим техническим решениям.
Авиаконструкторы многих стран разрабатывали конструкции крыла и фюзеляжей, усиливающих действие эффекта Коанда, обеспечивая увеличение подъемной силы самолета, широко известен закрылок Коанда, сохраняющий постоянную кривизну верхней поверхности при его отклонении и обдуваемый струёй сжатого воздуха или реактивной струёй.
Первые натурные эксперименты по суперциркуляции провели в 1954-м. В них струя газа, обладающая достаточно большой энергией, выдувалась из задней кромки крыла, образуя струйный закрылок. Интерес NASA к струйным закрылкам в конце 1950-х годов привел к разработке силовой установки, в которой вся реактивная струя выпускалась через относительно тонкую щель над верхней поверхностью крыла, создавая дополнительную подъемную силу. Однако двигатели транспортных самолетов того периода не имели достаточной тяги и не обеспечивали необходимого увеличения подъемной силы.
Идея оставалась без практического применения до тех пор, пока исследования, проведенные в NASA, не показали, что этим способом можно отклонять мощные выхлопные струи ТРДД с большой двухконтурностью, причем на большие углы и без чрезмерных потерь.
Так в США 1972 г. были заключены контракты с компаниями McDonnell Douglas и Boeing, каждая из которых должна была сконструировать, построить и испытать два опытных образца среднего транспортного самолета укороченных взлета и посадки по программе Advanced Medium STOL Transport (AMST). Компания McDonnell Douglas представила самолет YC-15 (рис. 2), и его опытный образец совершил первый полет 26 августа 1975 года.
Boeing C-14 (рис. 3) впервые поднялся в воздух 9 августа 1976 года и сразу продемонстрировал превосходные летные характеристики. В конструкции использовался обдув верхней поверхности крыла реактивной струей двух двигателей, установленных на крыле в гондолах, далеко выдвинутых вперед от передней кромки крыла. При отклоненных предкрылках и закрылках коандовского типа выхлопная струя безотрывно обтекая верхнюю поверхность крыла и закрылка, отклоняется вниз, тем самым увеличения подъемную силу.
В 1972 г. проходили предварительные исследования по самолету короткого взлета и посадки (КВП) в ОКБ О.К. Антонова (г. Киев). Инициатором работ над самолетом (рис. 5), использующим нетрадиционный метод повышения подъемной силы, был сам Генеральный конструктор. Говоря о целесообразности такого решения, Антонов О.К. образно описывал сотрудникам, как «могучий поток газов, с большой скоростью вытекающий из сопла реактивного двигателя, пройдет над крылом, создавая дополнительную подъемную силу».
Одной из главных особенностей Ан-72, обеспечившей сокращение разбега при взлете, является расположение двигателей над крылом. Это обусловлено стремлением конструкторов использовать так называемый «эффект Коанда», когда при отклоненных предкрылках и закрылках выхлопная струя двигателя, установленного на крыле в выдвинутой вперед мотогондоле, обтекает без отрыва верхнюю поверхность крыла и закрылка и отклоняется вниз, обеспечивая увеличение подъемной силы и сокращение взлетной дистанции.
Вера в перспективность нового самолета была столь велика, что решение о серийном производстве приняли, не дожидаясь конца испытаний. Американские QSRA и построенный по заказу ВВС Боинг YC-14, проходившие испытания в это время, так и не вышли из стадии опытных образцов.
Возможно, роль эффекта Коанда в создании подъемной силы Ан-72 составила не значительную величину (5-7%), но это не помешало в 1993 году компанией Boeing выпустить C-17 Globemaster III (на 2011 г. насчитывается 232 действующих единиц) также использующий эффект, хотя и в меньшей степени, нежели прототип YC-14.
Учёные и инженеры из Санкт-Петербургского государственного морского технического университета разработали пилотируемый аппарат «Blue Space» (рис. 6), использующий эффект Коанда для перемещения под водой.
Эффект Коанда заключается в том, что если из плоской щели выдувать на выпуклую поверхность по касательной струю воздуха или воды, то эта струя прилипает к поверхности на относительно большом расстоянии от щели. При этом на самой поверхности возникает разрежение или тяга (рис. 7).
Небольшие гладкие устройства сферической формы (рис. 21) способны путешествовать по трубопроводам системы охлаждения в поисках возможных трещин. Особенностью механического инспектора является отсутствие винтов или других внешних движительных элементов.
Применение суперциркуляции (эффекта Коанда) существует и в вертолетостроении: в 1975г. фирма Hughes, позднее вошедшая в фирму McDonnell-Douglas, начала исследования системы система NOTAR (No Таil Rotor), применяемой вместо рулевого винта.
Эта система (рис. 8) состоит из сопловой и циркуляционной подсистем. Циркуляционная подсистема использует эффект Коанда (при выдуве высокоскоростных струй через продольные щели на цилиндрической хвостовой балке), благодаря которому при обтекании хвостовой балки индуктивным потоком от несущего винта создается аэродинамическая сила, компенсирующая на плече относительно оси несущего винта часть реактивного момента.
Достоинства системы NOTAR заключаются в повышении безопасности (рулевой винт является уязвимым узлом вертолётов одновинтовой схемы) и значительном снижении уровня шума.
Существует три модели серийных вертолётов, использующих систему NOTAR, все они производятся компанией «MD Helicopters»:
В сентябре 1979 г. совершил первый полет NHH-2D с использованием несущего винта с управляемой циркуляцией. Концепция подобного несущего винта изучалась и оценивалась фирмой «Каман» в течение нескольких лет, полностью воплотилась в модели SH-2G (рис.12).
Струйный контроль полёта (fluidic flight control) применен для беспилотного турбореактивного самолёта DEMON (рис. 13). Этот уникальный аппарат избавлен своими создателями от необходимости использования для манёвров элеронов, закрылков и рулей, благодаря методам управления пограничным слоем, базирующимся на эффекте Коанда.
Откачивая или вдувая воздух в ключевых точках крыла или фюзеляжа, можно с помощью, сравнительно, тонких струй управлять движением аппарата.
Британская компания AESIR предлагает новый тип беспилотника с вертикальным взлётом, не имеющим каких-либо внешних подвижных частей (не считая небольших пластинок для отклонения потоков воздуха).
Вентилятор в центре машины служит для создания потока воздуха вокруг неё. Но в отличие от целого ряда аппаратов типа «винт в кольце» сам этот поток не создаёт реактивной подъёмной силы. И лопасти вентилятора тут тоже не действуют по принципу вертолётного винта.
В данном случае струя прилипает к закруглённой внешней поверхности корпуса. При этом на ней создаётся разряжение, увлекающее аппарат вверх. Раздельное регулирование потоков воздуха у разных секторов «тарелки» позволяет ей наклоняться и менять курс.
Метровый в диаметре Odin потребляющим реактивное горюче. Сама эта «тарелка» весит 10 килограммов и поднимает такую же нагрузку. В небе она держится час.
Следует отметить, что дисколеты («летающие тарелки»), работающие на эффекте Коанда можно выделить как отдельное направление авиатехники. Одни конструкции считаются мифическими, в других действием эффекта обуславливается лишь 5-10% подъемной силы, а третьи вообще не работоспособны.
Шривер и Габермоль якобы испытали свой дисковидный летательный аппарат в феврале 1941 года. Он как раз обладал возможностью вертикального взлёта, но эта модель № 1 принесла своим разработчикам массу проблем, поскольку постоянно терпела аварии. Была предпринята попытка утяжелить внешний обод, но и это не принесло успеха.
Модель № 2 представляла собой усовершенствованный вариант предыдущей. Размер «тарелки» увеличили, разместив в ее кабине двух пилотов, лежащих в креслах. Были усилены двигатели, увеличен запас топлива. Для стабилизации использовался рулевой механизм, подобный самолетному. Скорость якобы достигала 1200 километров в час. Как только набиралась нужная высота, несущие лопасти, находившиеся под днищем, изменяли свою позицию, и аппарат двигался подобно современным вертолетам.
Вячеслав и Михаил Козыревы, авторы фундаментального исследования под названием «Секретные проекты люфтваффе времён Второй Мировой войны», в своём труде чудо-двигатель Шаубергера даже не упоминают. Они пишут, что Джузеппе Белуццо родился в Вероне в 1876 году и сам был крупным специалистом в области двигателестроения. Он построил первую итальянскую паровую турбину, позднее усовершенствованную им для установки на линкорах и крейсерах. Белуццо занимался не только научно-технической деятельностью, но и политикой: при фашистском правительстве в Италии он избирался в парламент, и в течение трёх лет даже занимал пост министра экономики. Он утверждал, что наблюдавшиеся во время войны светящиеся НЛО являлись всего-навсего изобретёнными им дисковыми летательными аппаратами. Эти аппараты в обстановке строжайшей секретности разрабатывались с 1942 года в Италии и Германии. В доказательство своей правоты Белуццо в 1950 году представил эскизные наброски некоторых своих разработок военных лет.
Тем не менее, отрывочные и фрагментарные данные об испытаниях немецких «летающих дисков» существуют. Правда, за их достоверность полностью ручаться трудно.
Из современных конструкций наиболее известными являются: разработки, Ю.И. Безрукова (рис. 17), канадской фирмы «AVRO» (рис.18), Г. Смирнова (рис. 19), отца и сына Павловых (г. Казань) (рис. 20), А. Голгота (с. Алимпешть, Румыния) и др. Следует отметить, что проектом «AVROCAR» занимался английский конструктор Джон Фрост.
В данной работе рассмотрены технические устройства, в аэродинамическую схему которых входит эффект Коанда, обзор следует дополнить устройствами пневмоники (струйной пневмоавтоматики), вентиляции, кондиционирования, аспирации и т.д.