Экосфера земли что это
Экосфера
Экосфера(греч. oikos место обитания + sphaira шар) — это экологическая оболочка Земли, совокупность ее свойств, как планеты, создающих условия для развития биологических систем. Пространственно включает в себя все слои атсмосферы, гидросферу и часть литосферы, где возможна жизнь.
Впервые предложил использовать термин Л. Кол (1958). Встречался в трудах Б. Коммонерома (1973).
В отличие от биосферы понятие экосферы включает в себя характеристику состояния окружающей среды, в которой находятся биологические системы а также области где могут находиться живые организмы (в том числе за пределами естественной среды обитания)
Примечания
Ссылки
Полезное
Смотреть что такое «Экосфера» в других словарях:
экосфера — экосфера … Орфографический словарь-справочник
ЭКОСФЕРА — ЭКОСФЕРА, понятие, аналогичное БИОСФЕРЕ комплекс всех ЭКОСИСТЕМ, существующих на Земле. Термин «биосфера» употребляется только для обозначения зоны, где возможна жизнь, а экосфера подразумевает взаимодействие живых организмов с окружающей средой … Научно-технический энциклопедический словарь
Экосфера — Экосфера: совокупность свойств Земли как планеты, создающих на ней условия для развития жизни (биотоп биосферы). Источник: ГОСТ Р 14.01 2005. Экологический менеджмент. Общие положения и объекты регулирования (утв. Приказом Ростехрегулирования… … Официальная терминология
экосфера — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN ecosphere … Справочник технического переводчика
экосфера — Взаимосвязанная система биосферы и всех экологических факторов, воздействующих на организмы … Словарь по географии
экосфера — экологическая сфера … Словарь сокращений и аббревиатур
экосфера — biosfera statusas T sritis ekologija ir aplinkotyra apibrėžtis Žemės rutulio paviršiaus dalis, kurioje gyvena organizmai. Apima viršutinę litosferos (dirvos) dalį, troposferą (žemutinį atmosferos sluoksnį) ir hidrosferą (vandenis) iki didžiausių… … Ekologijos terminų aiškinamasis žodynas
экосфера — 3.1.4 экосфера: Совокупность свойств Земли как планеты, создающих на ней условия для развития жизни (биотоп биосферы). Источник: ГОСТ Р 14.01 2005: Экологический менеджмент. Общие положения и объекты регулирования … Словарь-справочник терминов нормативно-технической документации
экосфера — (греч. oikos место обитания + sphaira шар) см. Биосфера … Большой медицинский словарь
Экосфера: составляющие экосферы и ее функции
Среда и пределы жизни в экосфере.
В.И.Вернадский выделил в “экосфере” три главных компонента:
—живое вещество— вся совокупность живых организмов,
-минеральные вещества, биокосное вещество которое включается живым веществом в биогенный круговорот.
-продукты жизнедеятельности живого вещества, биогеное вещество которое может временно не участвовать в биогенном круговороте.
Различают пять основных функций живого вещества:
—газовая функция ( обуславливает миграцию газов и формирование газового состава атмосферы)
—концентрационная функция ( заключается в избирательном накоплении биогенных элементов окружающей среды различными организмами)
—окислительно-восстановительная функция ( заключается в химическом превращении различных химических веществ).
— деструкционная функция (обуславливает разложение организмов после их смерти и минерализацию органического вещества, т.е. превращение живого вещества в косное).
Современная биосфераэто сложная система, состоящая из многих компонентов, которая охватывает часть атмосферы, гидросферу и верхнюю часть литосферы.
Распространение жизни в биосфере, а также состав и свойства атмосферы, гидросферы и литосферы подробно освящены в учебнике И.А. Шилова “Экология” М.,1997г, стр12-31
IL3. Энергетические и вещественные особенности экосферы
Наиболее характерными особенностями любой сложной природной системы являются ее энергетическое и вещественное состояние и режим. В этой связи важнейшими факторами, определяющими режим и эволюцию экосферы, являются ее тепловой баланс и глобальные циклы вещества.
Для сравнения укажем, что человек использует сейчас почти такое же количество энергии, как и поток из недр Земли. Это иллюстрация того, что роль человека уже соизмерима с крупными природными процессами.
Солнечную энергию, приходящую к верхней границе атмосферы, постигают затем сложные преобразования \ Она частично:
а) рассеивается в атмосфере,
б) отражается от нее в мировое пространство,
в) достигает поверхности Земли.
В среднем длл Земли почти половина солнечной радиации, приходящей на верхнюю границу атмосферы, достигает поверхности океанов и суши. В свою очередь, эта доля солнечной энергии:
а) отражается от поверхности Земли в атмосферу и за ее пределы,
б) нагревает поверхность почвы и океанов,
в) расходуется на испарение воды.
В различных зонах поверхности Земли приток радиации не соответствует ее отдаче, так что радиационный баланс оказывается или положительным, или отрицательным, в полном соответствии с основными географическими закономерностями. Тепловое равновесие земной поверхности поддерживается межширотным обменом энергией посредством глобальной циркуляции атмосферы, а также и океана. Антропогенные изменения теплового баланса в отдельных точках или территориях (акваториях) могут вызывать изменения в циркуляции атмосферы с соответствующими воздействиями на климат.
1 Более детальные, количественные показатели теплового баланса Земли в целом, атмосферы и поверхности Земли можно найти в учебнике С.П.Хромова и М.А.Пет- росянца “Метеорология и климатология”. М.: Изд-во МГУ, 1994. С. 241-244.
В закрытой системе неизбежно возникают циркуляционные движения вещества, что и происходит на Земле. Это круговороты вещества, такие как большой (“геологический”) круговорот, объединяющий разрушение и снос горных пород с аккумуляцией и трансформацией продуктов разрушения, круговорот воды, биогеохимические циклы химических элементов, таких, например, как углерод, азот, фосфор, сера и др., общая циркуляция атмосферы, циркуляция вод океана.
Все естественные глобальные круговороты вещества отличаются чрезвычайно высокой степенью замкнутости. Современная продукция органического вещества в биосфере составляет 100 млрд. т/год в единицах массы органического углерода. Эта величина соответствует 1000 млрд. т живой массы. Время существования жизни на Земле около 3,5 млрд. лет. Если принять, что средняя продуктивность живой массы за это время равна 500 млрд. т в год, то всего за время существования жизни образовалось приблизительно 2хЮ12 млрд т живого вещества. (Это всего лишь втрое меньше массы всей Земли!).
Масса биосферы около 1,4×109 млрд. т. Таким образом, продукция биоты за время существования Земли превосходит массу биосферы на три порядка (в 1000 раз). Это значит, что все атомы углерода на Земле в среднем приблизительно 1000 раз становились частью синтезируемого органического вещества, а затем столько же раз это вещество подвергалось деструкции. Очевидно, что глобальные потоки синтеза и деструкции органического вещества должны совпадать с точностью не менее трех значащих цифр (0,001). Более детальный анализ показывает, что в геологическом масштабе времени баланс потоков синтеза и деструкции органического вещества Земли выдерживается с точностью до восьми знаков за запятой!
Поэтому даже малые (казалось бы, пренебрежимо малые), но устойчивые антропогенные воздействия могут приводить к существенным изменениям естественных круговоротов.
Глобальный цикл углерода
Вероятно, углерод является наиболее важным химическим элементом экосферы, потому что:
а) Почти все формы жизни состоят из соединений углерода;
б) Реакции окисления и восстановления соединений углерода в экосфере обусловливают глобальное распространение и баланс не только углерода, но и кислорода, а также и многих других химических элементов;
в) Способность атома углерода создавать цепи и кольца обеспечивает разнообразие органических соединений;
Основной запас углерода, принимающего активное участие в био- геохимическом цикле, находится в Мировом океане, где он содержится в различных формах: в виде частиц неорганических углеродсодержащих веществ, частиц органического нерастворимого углерода, растворенного органического углерода и живых форм.
Несмотря на относительно малые запасы азота в биосфере и гидросфере, это активный элемент, быстро обменивающийся между геосферами. Картина химических процессов цикла азота чрезвычайно сложна и разнообразна, потому что азот проходит сквозь воздух, воду и почву в различных химических формах и к тому же видоизменяющихся. В наземном и океаническом субциклах азота сосредоточено до 95% всех его потоков.
Другим фактором антропогенной интенсификации потоков азота является энергетика, поскольку при сжигании угля, нефти и ее продуктов, сланцев, торфа и пр. увеличивается эмиссия в атмосферу аммиака и оксидов азота. В свою очередь, оксиды азота и аммиак играют решающую роль в процессах асидификации окружающей среды.
В естественных экосистемах связывание фосфора растениями находится в состоянии баланса с возвратом фосфора из растений благодаря распаду органического вещества. В растворенном виде фосфор всегда находится в динамическом равновесии с кислородом (в соединениях типа Р2О5, Р043 и др.). В почвах и растительности среднее соотношение концентрации углерода и фосфора равно: С:Р = 750:1.
Биогеохимия фосфора весьма отлична от биогеохимии других биогенных элементов (углерода, кислорода, азота, серы), поскольку фосфор, в отличие от других биогенов, практически не встречается в газообразной форме. Это создает однонаправленный поток фосфора вниз по уклону под действием силы тяжести, главным образом в виде тонкодисперсных наносов, на поверхности которых адсорбированы соединения фосфора. Таким образом происходит транспорт этого элемента реками в системы с замедленным водообменом (озера, водохранилища, моря и пр.), где и отлагаются наносы, относительно богатые фосфором. Противоположного потока не существует, что создает реальную опасность значительного обеднения фосфором экосистем суши (в том числе и агроэкосистем) с соответствующим снижением их биологической продуктивности.
Антропогенный возврат фосфора из водоемов на водосборы пока невероятен и как бы относится к элементам научной фантастики, но не исключено, что к середине XXI века эту проблему надо будет решать.
Пока же вследствие антропогенной деятельности, приводящей к повышенной эрозии почв, смыву фосфорных удобрений и сбросу неочищенных сточных вод интенсивность потоков фосфора в мире увеличилась. Это приводит к усилению процессов эвтрофикации водоемов. Общемировая величина потока фосфора в гидросферу оценивается величиной около 20 млн. т в год.
Глобальный цикл серы
Из всех глобальных биогеохимических циклов основных биогенных элементов (С, О, N, Р, S) цикл серы наиболее сильно нарушен деятельностью человека. Важнейшее антропогенное воздействие это эмиссия оксида серы S02, возникающая благодаря сжиганию горючих ископаемых, прежде всего угля. Около 90% мировой эмиссии этого газа характерно для Северного полушария. С 1860 по 1980 гг. антропогенная эмиссия S02 увеличилась от 2 млн. т серы в год до 70 млн. т, то есть в 35 раз! В среднем антропогенный поток серы вдвое превышает естественный поток. Современный сток соединений серы по речным системам также более чем вдвое превышает его первоначальную, доиндустриальную величину вследствие эрозии почв, применения удобрений, выпадений из атмосферы и пр.
Антропогенное нарушение цикла серы определяет или серьезно влияет на ряд глобальных геоэкологических проблем, таких как аси- дификация экосистем, состояние озона в стратосфере и тропосфере и изменение климата.
В настоящее время становятся весьма заметными воздействия человека как на энергетический баланс Земли, так и на глобальные циклы вещества. Медленная естественная эволюция экосферы была связана также с относительно малоинтенсивным потоком биогенных элементов, резко усилившимся в антропогенных системах, что приводит к повышению неустойчивости экосферы.
Как правило, естественные вещественно-энергетические круговороты и балансы экосферы и отдельных ее частей отличаются высокой степенью замкнутости, в то время как деятельность человека ведет к разомкнутости и, следовательно, к неустойчивости систем. Степень разомкнутости может быть оценена по средней скорости оборота вещества за год:
Например, в целинной степи средняя скорость оборота углерода и других биогенов около нескольких тысяч лет. После распашки степи значительное количество углерода, азота и фосфора выносится из системы как в виде ежегодного урожая, так и вследствие водной и ветровой эрозии почв, а также и из-за других причин антропогенного происхождения (например, пожаров). Система становится разомкнутой, со средней скоростью оборота вещества, превышающей естественную в сотни и тысячи раз, и, следовательно, неустойчивой. Нарушения замкнутости как локальных систем, так и глобальных циклов приводят к серьезным геоэкологическим проблемам, которые будут детально анализироваться в последующих главах.
Следует подчеркнуть, что понимание циклов отдельных биогенных элементов намного превышает понимание механизма комбинаций циклов, то есть того, как эти процессы происходят на самом деле в экосфере.
Основные геоэкологические проблемы в их взаимосвязи с глобальными биогеохимическими циклами показаны в табл. 1.
Все антропогенные экосистемы, даже самые высокоурожайные, прекрасно возделываемые поля и хорошо ухоженные парки отличаются высокой степенью незамкнутости. С этой точки зрения, природно-антропогенные системы, такие как поля, сады, огороды, пастбища, лесные плантации, не говоря уже о городских системах, вно-
Таблица 1. Взаимосвязь глобальных биогеохимических циклов и геоэкологических проблем
Характеристика биосферы: основы, функции и структура
Биосферой называют оболочку земли, в которой обитают все живые организмы. В её состав входят воздух, земля и вода, то есть атмосфера, литосфера и гидросфера. Не так давно была установлена нижняя граница биосферы — три километра вглубь почвы и два километра ниже дна океана. Верхние кордоны атмосферы определить с такой точностью нельзя, они равняются 20-35км.
Биосферу можно также назвать глобальной экосистемой. Важной ее составляющей является, так называемая, сложная система круговорота между организмами и сложными химическими веществами. Одним из основополагающих процессов в глобальной экосистеме можно смело считать фотосинтез. Также, к основным процессам относятся трофические связи организмов, находящихся в одной пищевой цепи.
В живую оболочку Земли, кроме растений, микроорганизмов, животных, входят продукты жизнедеятельности организмов, такие как, уголь, нефть.
Останки живых организмов, осадочные породы также составляют часть биосферы.
Биосфера — это сложная система, в которой все взаимосвязано, все ее компоненты не могут существовать отдельно. Иногда, в науке используется обозначение «биологическая оболочка» для глубокого понимания биосферы.
Если из данной экосистемы изъять, к примеру, воздух или воду, то вся система рушится. Это, в конечном итоге, может пагубно отразится на всей системе и вывести ее из гармонии. Строение органических веществ соответствует среде обитания, а их разнообразие говорит о многообразии пространств, в которых живут те или иные организмы.
Последние годы человечество только этим и занимается. Люди обедняют и осушают почву, уничтожают леса, истребляют животных, загрязняют воздух и воду. Тем самым нанося непоправимый вред биосфере и самим себе в частности.
Существование экосистем предполагает обмен энергетическими потоками, первым звеном в котором являются автотрофные организмы, продуцирующие органику.
Биосфера – это оболочка Земли, то пространство, где существует жизнь. Термин «биосфера» был введен австрийским ученым Эдуардом Зюссом в 1875 году. Позже учение о «пленке жизни» продолжил естествоиспытатель Владимир Вернадский. По его учению, в биосфере взаимосвязаны все компоненты на геохимическом уровне. Вернадский ввел новый термин – «ноосфера», он доказал, что живые организмы являются определяющими в жизненной силе Земли.
Живая оболочка планеты является саморегулируемой системой, обладающей свойствами саморегуляции.
Разнообразие видов, форм жизни обуславливает стабильность и устойчивость жизненной сферы. Окружающая среда наносит отпечаток на внешний вид, строение организмов, которые проявляются в различных адаптациях, приспособлениях, ответных реакциях.
Жизнь кишит везде, все ее элементы связаны, влияют друг на друга и на природу в целом. В атмосфере живет множество животных и микроорганизмов, которые передвигаются активным или пассивным способом.
Грибные и бактериальные споры были найдены на высоте 20—22 км.
Понятие биосферы и ее сущность
Биосфера — это условная оболочка Земли, которую заселяют живые организмы. Почему условная? Дело в том, что другие оболочки планеты (земная, водная и воздушная) обрамляют планету непрерывным слоем. Сначала идет земная и океаническая кора (литосфера), затем гидросфера (она объединяет все водные объекты), после — атмосфера (воздушная оболочка, плавно переходящая в космическое пространство). Биосферу сложно представить в виде конкретного слоя, ведь живые организмы равномерно распределены по всей поверхности Земли и могут обитать во всех трех стихиях.
Сущностные характеристики биосферы уходят в самую древность, но все же это самая «молодая» оболочка нашей планеты. Жизнь на Земле зародилась относительно недавно, всего 3,8 миллиардов лет назад, что, по сравнению с возрастом планеты, сущий пустяк. Существует два понятия биосферы:
Тем не менее, основные характеристики биосферы обусловлены именно ее органической составляющей. Ведь это ее принципиальное отличие от других оболочек Земли.
Влияние человека на биосферу
Влияние человека на биосферу является неоднозначным. С каждым столетием антропогенная деятельность становится более интенсивной, разрушительной и масштабной, поэтому люди способствуют возникновению не только локальных экологических проблем, но и глобальных.
Одним из результатов влияния человека на биосферу является сокращение численности флоры и фауны на планете, а также исчезновение многих видов с лица земли. Например, ареалы растений уменьшаются в связи с земледельческой деятельностью и вырубкой лесов. Множество деревьев, кустарников, трав являются вторичными, то есть вместо первичного растительного покрова были посажены новые виды. В свою очередь, популяции животных уничтожаются охотниками не только ради добычи пропитания, но и с целью продажи ценных шкур, костей, плавников акул, бивней слонов, рогов носорогов, различных частей тела на черном рынке.
Довольно сильно антропогенная деятельность влияет на процесс почвообразования. Так, вырубка деревьев и распашка полей приводит к ветровой и водной эрозии. Изменение состава растительного покрова приводит к тому, что другие виды участвуют в процессе образования почв, а, значит, образуется иной тип грунта. Из-за использования в земледелии различных удобрений, сброса в землю твердых и жидких отходов, изменяется физико-химический состав почвы.
Демографические процессы оказывают негативное влияние на биосферу:
Стоит отметить, что люди способствуют загрязнению всех слоев биосферы. Источников загрязнения на сегодняшний день существует огромное многообразие:
Все это приводит не только к изменению экосистем и сокращению биоразнообразия на земле, но и к климатическим изменениям. Из-за влияния человеческого рода на биосферу происходит парниковый эффект и образование озоновых дыр, таяние ледников и глобальное потепление, изменение уровня океанов и морей, выпадение кислотных осадков и т.п.
Со временем биосфера становится все более неустойчивой, что приводит к разрушению многих экосистем планеты. Многие ученые и общественные деятели выступают за то, чтобы снизить влияние человеческого сообщества на природу, с целью сохранить биосферу Земли от уничтожения.
Учение о биосфере и происхождение термина
Концепция живой оболочки была предложена в 19 веке. Жан Батист Ламарк дал краткую характеристику биосфере, в то время как официального названия еще даже не существовало. В 1875 году австрийский палеонтолог и геолог Эдуард Зюсс впервые предложил термин «биосфера», который используется по сей день.
Огромный вклад в изучение всего живого на Земле внес советский философ и биогеохимик В. И. Вернадский, он прославился благодаря созданию целостного учения о биосфере. В его трудах живые организмы выступают как мощнейшая сила, которая непрерывно участвует в преобразовании планеты Земля.
Границы обитания живых организмов
Общая характеристика биосферы начинается с описания границ, в пределах которых могут обитать живые организмы. Некоторые из них довольно живучие, и могут выдержать даже самые критические условия.
Структура живой оболочки
К основным характеристикам биосферы можно отнести ее структуру. Вернадский выделял несколько типов веществ, которые слагают живую оболочку. Причем они могли иметь как органическое, так и неорганическое происхождение:
БИОКОСНЫЕ СИСТЕМЫ
В биосфере Земли все вещество находится в двух качественно различных состояниях: живом и косном. Несмотря на то, что живое и неживое резко обособлены друг от друга, они составляют биокосные системы (экологические системы), поскольку организмы и живое вещество в целом являются неравновесными биологическими системами и свое устойчивое состояние поддерживают только непрерывным обменом вещества и энергии с окружающим их веществом.
Живое вещество, используя солнечную энергию, организует косное вещество и создает новое поколение организмов, а также особую разновидность вещества — биогенное вещество, которое образуется из отходов живых организмов и отмерших их частей (гумус почвы, торф, каменный уголь, известняк и др.).
Особой разновидностью биогенного вещества является созданное человеком техногенное вещество (пластмассы, свободные металлы, машины, книги, картины и др.).
Создавая отрицательные обратные связи с окружающим косным веществом, живые организмы способны преодолевать внешние воздействия и поддерживать свое стабильное состояние (гомеостаз — из слов «подобный», «стабильный»).
Но живые организмы, особенно высокоорганизованные, способны создавать и положительные обратные связи с окружающей средой, что приводит к изменению самих организмов и продуктов их деятельности (эволюция жизни и функций организмов, развитие умственных способностей, усложнение орудий труда и др.).
В результате деятельности наземного живого вещества на поверхности суши возник биогенный слой, еще более активный, чем планктонный слой океана — это почвенный покров — педосфера.
В. И. Вернадский удачно назвал почву биокосным телом.
Почвенный покров планеты — зона наиболее напряженных биогенных геохимических процессов. В ней тесно сочетается деятельность как высших растений (составляющих основную массу живого вещества Земли), так и почвенных животных и микроорганизмов. В. А. Ковда утверждал, что в почве сосредоточена одна четвертая часть всей биомассы лесов и более двух третей массы степной растительности. Биомасса микроорганизмов педосферы оценивается в 1 млрд т.
Наиболее активно биохимические процессы происходят в самом верхнем горизонте почвы.
Соответственно сверху вниз происходит убывание содержания гумуса, численности животных и микроорганизмов, концентрация химических элементов (вовлекаемых в биологический круговорот). Естественно, что эта общепланетарная закономерность в различных типах почв определенным образом видоизменяется.
Кроме почвы к биокосным системам относится и подавляющее большинство вод земной коры (в том числе и Мировой океан): реки, озера, грунтовые и многие подземные воды.
Образование планктонного слоя в океане и почвенного покрова на суше обусловило появление новых факторов глобальной миграции химических элементов в географической оболочке.
В массообмене между атмосферой и поверхностью суши в настоящее время принимает участие не столько литосфера, сколько педосфера. Важная роль в дифференциации химических элементов на границе раздела «океан-атмосфера» отводится жизнедеятельности планктона.
Самая крупная биокосная система — биосфера.
Это такая область жизни, которая включает в себя тропосферу, Мировой океан, ландшафты суши и толщу литосферы до глубин в сотни и тысячи метров, где еще возможна геохимическая деятельность бактерий (условная нижняя граница биосферы — горизонты с температурой 100°С).
Таким образом, биосфера резко неоднородна по агрегатному строению вещества — в нее входит часть атмосферы, гидросферы и литосферы (рис. 1.8). Это обстоятельство, вероятно, и мешало внедрению понятия о биосфере в естествознание, хотя элементы подобного подхода к природе намечались уже в трудах великого французского натуралиста Ж. Ламарка (1744 — 1829).
Термин «биосфера» и научное понятие о ней были сформулированы лишь в 1875 г. крупным австрийским тектонистом Э. Зюссом (1831-1914). Специально биосферой Э. Зюсс не занимался и разработка современного учения о биосфере, ставшего теоретической основой решения проблемы окружающей среды, связана с именем В. И. Вернадского.
Биосфера представляет собой неоднородную пленку на поверхности Земли. Наиболее мелкие элементы «мозаики», из которых сложена вся «картина» биосферы, называются экосистемами (биогеоценозами).
Понятие экосистемы введено в биологию ботаником А. Тэнсли в 1935 г. Оно трактуется как совокупность местообитания и характерных для него сообществ живых организмов, т. е. неживой и живой природы, в их взаимодействии в определенном участке биосферы.
Рис.1.8. Строение биосферы
Понятие о биогеоценозах впервые сформулировал В.Н. Сукачев в 40-е гг. XX в. Биогеоценозами В. Н. Сукачев называл участки земной поверхности, относительно однородные по составу растительности (фитоценоз), животного населения (зооценоз), микроорганизмов (микробоценоз), строению почвенного покрова, горных пород, лежащих непосредственно под почвенным покровом, климатических условий и увлажнения.
Все это компоненты биогеоценозов. Растительность, животное население и микроорганизмы объединяются под общим названием — биоценоз, а участок земной поверхности, который занимает данный биоценоз, носит название биотопа или экотопа.
Биоценоз активно взаимодействует со средой обитания — биотопом.
Каждый биогеоценоз отделяется от других границами. Границами биогеоценозов являются прежде всего границы растительных сообществ. К биогеоценозу применим и термин «экосистема», хотя между этими почти однозначными терминами имеются различия. Понятие «экосистема» является более широким.
Она не связывается с каким-либо ограниченным участком земной поверхности. Так, экосистемой можно считать лесную зону и биосферу в целом.
В последнее время, в связи с развитием глобальной экологии, стал использоваться термин «экосфера».
В него обычно вкладывается тот же смысл, что и в понятие «биосфера». Однако можно думать, что в понятие экосферы можно вкладывать другое, отличное от биосферы, значение. Представляется, что функционирование глобальной экосистемы проявляется не только в пределах биосферы.
Так, вся атмосфера Земли является продуктом жизни и экраном, защищающим жизнь от воздействия Космоса. Она же служит и ресурсом газов, необходимых для жизни, и т. д. Поэтому под экосферой можно понимать пространство, в котором действуют обратные связи между живым и косным веществом Земли.
Живое вещество в составе других оболочек Земли
Если подробно останавливаться на характеристике и составе биосферы, то нельзя не рассмотреть особенности жизнедеятельности живых организмов в других оболочках планеты:
Вывод
Подводя итоги, стоит отметить, что жизнь в биосфере размещается по-разному и неравномерно. Большое количество живых организмов обитает на земной поверхности, будь то водная среда или суша. Все существа соприкасаются с водой, минералами и атмосферой, находясь с ними в непрерывной связи. Именно это обеспечивает оптимальные условия для жизни (кислород, вода, свет, тепло, питательные вещества). Чем глубже в толщу воды океана или под землю, тем жизнь более однообразна. Живое вещество также распространяется и по площади, и стоит отметить разнообразие форм жизни по всей земной поверхности. Чтобы понять эту жизнь, нам понадобиться еще не один десяток лет, а то и сотен, но ценить биосферу и уберечь ее от нашего вредного, человеческого, влияния нужно уже сегодня.
От тундры до тропических лесов. Классификация биомов планеты
Характеристика биосферы неразрывно связана с понятием биом. Под этим термином понимаются крупные биологические системы, которые имеют некий преобладающий тип растительности или специфические особенности ландшафта. Всего их девять. Ниже представлена краткая характеристика основных биомов биосферы:
Основные функции живой оболочки в природе
Самое время рассмотреть основные функции биосферы и их характеристику:
Живой мир, созданный людьми
Живой мир, созданный людьми
Примером искусственной экосистемы является оранжерея. Это слово происходит от французского orange — «апельсин». Но здесь выращивают не только апельсины, но и другие теплолюбивые растения, и южные цветы, которые на севере в открытом грунте не растут. Сажают в оранжереях и местные растения, которым необходимо обеспечивать постоянный микроклимат. Внутри всегда тепло, потому что солнце нагревает стеклянную крышу оранжереи, кроме того, может использоваться и специальный подогрев. А еще там обитают насекомые-опылители.
Свойства биосферы
Так как живая оболочка представляет собой очень сложную систему, то характеристика биосферы не может обойтись без основных свойств, которые определяют ее специфику: