Электрическая энергия превращается в механическую что за прибор
Электромеханический преобразователь
Электромеханические преобразователи — это класс устройств, созданных для преобразования электрической энергии в механическую и наоборот. Также возможно преобразование электрической энергии в электрическую же энергию другого рода. Основными видом электромеханического преобразователя является электродвигатель (электрогенератор).
Содержание
Основные электромеханические преобразователи
Электрические машины
Электрические машины, за редким исключением, совершают однонаправленное непрерывное преобразование энергии. Особым видом электрической машины является трансформатор, не имеющий движущихся частей, участвующих непосредственно в преобразовании энергии, но принципиально схожий с генераторами и двигателями. Все электрические машины являются обратимыми (могут быть как генераторами, так и двигателями). [1]
По назначению разделяют:
По действию разделяют:
Трансформатор
Трансформатором называется статическая электрическая машина, способная преобразовывать электрическую энергию из одного вида в другой, изменяя её основные параметры — напряжение (трансформатор напряжения), мощность (трансформатор мощности), силу тока (трансформатор тока) или частоту (трансформатор частоты).
Основным параметром любого трансформатора является коэффициент трансформации — величина, равная отношению значений изменяемого параметра (напряжения, тока, мощности или частоты).
Синхронная машина
Синхронная машина — это такая электрическая машина переменного тока, в которой частота вращения ротора равна частоте изменения (вращения) электромагнитного поля статора.
Асинхронная машина
Асинхронной машиной, в противовес синхронной, называют такую электрическую машину, в которой частота вращения ротора меньше частоты изменения (вращения) электромагнитного поля статора. Эта разница называется скольжением.
Машина постоянного тока
Машина постоянного тока — электрическая машина, преобразующая энергию в два этапа: электрическую энергию постоянного тока в электрическую энергию переменного тока при помощи преобразователя частоты (механического выпрямителя — коллектора); электрическую энергию переменного тока в механическую энергию на валу двигателя.
Умформер
Умформер (моторгенератор) — устройство, объединяющее, как правило, оба вида машин переменного тока (синхронную и асинхронную), либо переменного и постоянного тока. Преобразует один вид электрической энергии в электрическую энергию другого рода. Является электромеханическим преобразователем электрического тока.
Примечания
Полезное
Смотреть что такое «Электромеханический преобразователь» в других словарях:
ЭЛЕКТРОМЕХАНИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ — преобразует электрический ток в соответствующее ему механическое линейное или угловое перемещение (напр., катушка индуктивности со свободно перемещающимся сердечником). Применяются главным образом в качестве исполнительных механизмов в системах… … Большой Энциклопедический словарь
электромеханический преобразователь — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN electromechanical transducer … Справочник технического переводчика
электромеханический преобразователь — преобразует электрический ток в соответствующее ему механическое линейное или угловое перемещение (например, катушка индуктивности со свободно перемещающимся сердечником). Применяются главным образом в качестве исполнительных механизмов в… … Энциклопедический словарь
электромеханический преобразователь — elektromechaninis keitiklis statusas T sritis automatika atitikmenys: angl. electromechanical converter vok. elektromechanischer Umformer, m; elektromechanischer Wandler, m rus. электромеханический преобразователь, m pranc. convertisseur… … Automatikos terminų žodynas
электромеханический преобразователь — elektromechaninis keitlys statusas T sritis Standartizacija ir metrologija apibrėžtis Įtaisas elektriniam dydžiui keisti mechaniniu. atitikmenys: angl. electromechanical transducer vok. elektromechanischer Wandler, m rus. электромеханический… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
Электромеханический преобразователь — устройство для преобразования механических перемещений (колебаний) в изменение электрического тока или напряжения (электрический сигнал) и наоборот. Применяются главным образом как исполнительные устройства систем автоматического… … Большая советская энциклопедия
ЭЛЕКТРОМЕХАНИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ — устройство, преобразующее электрич. величины (силу тока, напряжение) в соответствующее механич. перемещение. Примерами Э. п., в частности, являются механизмы электроизмерит. приборов со стрелочным отсчётом, электромагн. реле … Большой энциклопедический политехнический словарь
преобразователь электромеханический (как активный элемент) — 1. Электромеханический элемент, служащий непосредственно для преобразования электрической энергии в механическую (акустическую) и обратно (например, пьезоэлемент). 2. Активный элемент преобразователя, преобразующий электрическую энергию в… … Справочник технического переводчика
электромеханический цифровой прибор (преобразователь) — Цифровой прибор (преобразователь), переключающие устройства измерительной цепи которого построены на контактных элементах. [ГОСТ 13607 68] Тематики приборы и преобразователи электроизмерительные … Справочник технического переводчика
Электромеханический фильтр — ЭМФ советского производства, предназначенный для выделения нижней боковой полосы в аппаратуре радиосвязи с промежуточной частотой 500 кГц. Ширина полосы пропускания 3,1 кГц. Механическ … Википедия
Электрогенератор
Электрический генератор (от латинского — «производитель») — устройство, вырабатывающее электрическую энергию, то есть преобразующее механическую энергию в электрический ток.
Благодаря изобретению генератора уже в середине XIX в. у промышленности и населения появилась реальная возможность производства и использования электричества, например, для работы станков или освещения домов и улиц. Кстати, электрические двигатели постоянного тока по своей конструкции практически полностью аналогичны генераторам. Более того, если вращать якорь электромотора постоянного тока (например, от электрической машинки или другой игрушки), он, как и генератор, начнет вырабатывать ток.
Принцип работы первого генератора
В 1831 г. английский ученый Майкл Фарадей открыл электромагнитную индукцию. Сущность этого открытия заключалась в том, что если вращать проводник между полюсами магнита, то в нем возникнет электромагнитное поле. Такое поле возбуждает движение электронов, и по проводнику начинает течь электрический ток. Благодаря этому открытию стало возможным создание электрического генератора и электрического двигателя.
Как работает электрогенератор?
Работа электрогенератора состоит во взаимодействии статора, ротора и контактных колец. Статор во включенном генераторе остается неподвижным. Расстояние между статором и ротором составляет всего лишь несколько миллиметров, поэтому между ними возникает очень сильное магнитное поле, и в обмотке ротора появляется электрический ток большой мощности. Обмотка статора при подаче напряжения от внешнего источника превращается в электромагнит.
Ротор соединен с валом механического устройства (двигатель внутреннего сгорания, ветряной или водяной двигатель и т. п.) и вращается во время работы генератора. Обмотка ротора в момент своего движения постоянно пересекает магнитное поле, создаваемое обмотками статора, и в ней образуется электрический ток.
Такая конструкция позволила избавиться от больших и тяжелых постоянных магнитов. Контактные кольца предназначены для съема электрической энергии с обмоток ротора. Они представляют собой барабан со множеством медных пластин, к которым подключены обмотки ротора. Снаружи с ними соприкасаются графитовые щетки, к которым с помощью проводов подключен потребитель электрической энергии.
Современный водяной двигатель
В современных водяных двигателях колесо с лопастями заменено более скоростной водяной турбиной (образовано от слова «турбо» — «вихрь»). Чаще всего она имеет спиральный кожух, по форме напоминающий раковину улитки. Вода поступает в широкий конец кожуха. Так как «коридор», по которому она течет, все время сужается, ее напор увеличивается.
Затем усиленный поток воды поступает на вогнутые лопатки турбины, которая расположена в центре «улитки», и вращает ее. Так энергия потока воды преобразуется в механическую работу.
Электричество из воды
В наши дни электричество производят на гидроэлектростанциях, которые используют энергию движущейся воды.
Гидроэлектростанция состоит из двух основных частей: энергоблока и плотины (или дамбы), накапливающей воду. В энергоблоке расположены генераторы, вырабатывающие электрический ток. Их роторы вращаются благодаря водяным турбинам. Так энергия потока воды преобразуется в электрическую.
Гидроэлектростанции-гиганты
Одна из самых мощных в мире гидроэлектростанций была построена в Китае на реке Янцзы и получила название «Три ущелья». Ее бетонная плотина имеет длину 2309 м и высоту 185 м. Общая мощность электрогенераторов станции составляет почти 23 МВт (1 МВт = 1 млн Вт). За год они вырабатывают около 100 млрд кВт/ч электроэнергии.
Лишь немногим меньше электроэнергии вырабатывает гидроэлектростанция «Итайпу», расположенная на реке Парана (на границе Бразилии и Парагвая), которая имеет самую большую плотину. Высота этого гигантского сооружения достигает 196 м, а длина — 7235 м.
Процесс преобразования энергии в электрических машинах
В электрических машинах происходит процесс преобразования энергии. Генераторы преобразуют механическую энергию в электрическую. Это означает, что для работы генератора надо вращать его вал каким-либо двигателем. На тепловозе, например, генератор приводят во вращение дизелем, на тепловой электростанции — паровой турбиной, на гидроэлектростанции — водяной турбиной.
Электрические двигатели, наоборот, преобразуют электрическую энергию в механическую. Поэтому для работы двигателя его надо соединить проводами с источником электрической энергии, или, как говорят, включить в электрическую сеть.
Принцип действия любой электрической машины основан на использовании явлений электромагнитной индукции и возникновения электромагнитных сил при взаимодействии проводников с током и магнитного поля. Эти явления имеют место при работе как генератора, так и электродвигателя. Поэтому часто говорят о генераторном и двигательном режимах работы электрических машин.
Об осуществлении в электрической машине энергопреобразовательного процесса
Из основных электроэнергетических теорем Пуанкаре и Баркгаузена вытекают следующие положения:
1) непосредственное взаимообратное преобразование механической и электрической энергии возможно только в том случае, если электрическая энергия является энергией переменного электрического тока;
2) для осуществления процесса такого энергопреобразования необходимо, чтобы в системе электрических контуров, предназначаемых для этой цели, была либо изменяющаяся электрическая индуктивность, либо изменяющаяся электрическая емкость,
3) для осуществления преобразования энергии переменного электрического тока в энергию постоянного электрического тока, необходимо, чтобы в предназначаемой для этой цели системе электрических контуров имелось изменяющееся электрическое сопротивление.
Из первого положения следует, что механическая энергия может преобразоваться в электрической машине только в энергию переменного электрического тока или обратно.
Кажущееся противоречие этого утверждения с фактом существования электрических машин постоянного тока разрешается тем, что в «машине постоянного тока» мы имеем двустадийное преобразование энергии.
Так, в случае электромашинного генератора постоянного тока мы имеем машину, в которой механическая энергия преобразуется в энергию переменного тока, а эта последняя, вследствие наличия особого устройства, представляющего собой «изменяющееся электрическое сопротивление», преобразуется в энергию постоянного тока.
В случае электромашинного двигателя процесс идет, очевидно, в обратном направлении: подводимая к электромашинному двигателю энергия постоянного электрического тока преобразуется посредством упомянутого изменяющегося сопротивления в энергию переменного электрического тока, а последняя — в энергию механическую.
Роль упомянутого изменяющегося электрического сопротивления выполняет «скользящий электрический контакт», который в обычной «коллекторной машине постоянного тока» состоит из «электромашинной щетки» и «электромашинного коллектора», а в «униполярной электрической машине постоянного тока» из «электромашинной щетки» и «электромашинных контактных колец».
Так как для создания в электрической машине процесса энергопреобразования необходимо наличие в ней или «изменяющейся электрической индуктивности», или «изменяющейся электрической емкости», то электрическую машину можно выполнить либо на принципе электромагнитной индукции, либо на принципе электрической индукции. В первом случае получаем «индуктивную машину», во втором — «емкостную машину».
Емкостные машины не имеют пока практического значения. Применяемые в промышленности, на транспорте и в быту электрические машины представляют собой индуктивные машины, за которыми на практике укоренилось краткое наименование «электрическая машина», являющееся, по существу, более широким понятием.
Принцип действия электрического генератора.
Простейшим электрическим генератором является виток, вращающийся в магнитном поле (рис. 1, а). В этом генераторе виток 1 представляет собой обмотку якоря. Индуктором служат постоянные магниты 2, между которыми вращается якорь 3.
Рис. 1. Принципиальные схемы простейших генератора (а) и электродвигателя (б)
При вращении витка с некоторой частотой вращения n его стороны (проводники) пересекают магнитные силовые линии потока Ф и в каждом проводнике индуцируется э. д. с. е. При принятом на рис. 1, а направлении вращения якоря э. д. с. в проводнике, расположенном под южным полюсом, согласно правилу правой руки направлена от нас, а э. д. с. в проводнике, расположенном под северным полюсом, — к нам.
Если подключить к обмотке якоря приемник электрической энергии 4, то по замкнутой цепи пойдет электрический ток I. В проводниках обмотки якоря ток I будет направлен так же, как и э. д. с. е.
Выясним, почему для вращения якоря в магнитном поле приходится затрачивать механическую энергию, получаемую от дизеля или турбины (первичного двигателя). При прохождении тока i по расположенным в магнитном поле проводникам на каждый проводник действует электромагнитная сила F.
При указанном на рис. 1, а направлении тока согласно правилу левой руки на проводник, расположенный под южным полюсом, будет действовать сила F, направленная влево, а на проводник, расположенный под северным полюсом, — сила F, направленная вправо. Указанные силы создают совместно электромагнитный момент М, направленный по часовой стрелке.
Из рассмотрения рис. 1, а видно, что электромагнитный момент М, возникающий при отдаче генератором электрической энергии, направлен в сторону, противоположную вращению проводников, поэтому он является тормозным моментом, стремящимся замедлить вращение якоря генератора.
Для того чтобы предотвратить остановку якоря, требуется к валу якоря приложить внешний вращающий момент Мвн, противоположный моменту М и равный ему по величине. С учетом же трения и других внутренних потерь в машине внешний вращающий момент должен быть больше электромагнитного момента М, созданного током нагрузки генератора.
Следовательно, для продолжения нормальной работы генератора к нему необходимо подводить извне механическую энергию — вращать его якорь каким-либо двигателем 5.
При отсутствии нагрузки (при разомкнутой внешней цепи генератора) имеет место режим холостого хода генератора. В этом случае от дизеля или турбины требуется только такое количество механической энергии, которое необходимо для преодоления трения и компенсации других внутренних потерь энергии в генераторе.
При увеличении нагрузки генератора, т. е. отдаваемой им электрической мощности Рэл, увеличиваются ток I, проходящий по проводникам обмотки якоря, и создаваемый им тормозящий момент М. Следовательно, должна быть соответственно увеличена и механическая мощность Рмх, которую генератор должен получить от дизеля или турбины, для продолжения нормальной работы.
Таким образом, чем больше электрической энергии потребляется, например, электродвигателями тепловоза от тепловозного генератора, тем больше механической энергии забирает он от вращающего его дизеля и тем больше топлива необходимо подавать дизелю.
Из рассмотренных выше условий работы электрического генератора следует, что характерным для него является:
1. совпадение по направлению тока i и э. д. с. в проводниках обмотки якоря. Это указывает на то, что машина отдает электрическую энергию;
2. возникновение электромагнитного тормозного момента М, направленного против вращения якоря. Из этого вытекает необходимость получения машиной извне механической энергии.
Принцип действия электрического двигателя.
Принципиально электродвигатель выполнен так же, как генератор. Простейший электродвигатель представляет собой виток 1 (рис. 1,б), расположенный на якоре 3, который вращается в магнитном поле полюсов 2. Проводники витка образуют обмотку якоря.
Если подключить виток к источнику электрической энергии, например к электрической сети 6, то по каждому его проводнику начнет проходить электрический ток I. Этот ток, взаимодействуя с магнитным полем полюсов, создает электромагнитные силы F.
Выясним, почему при вращении якоря электродвигателя, работающего под нагрузкой, расходуется электрическая энергия. Как было установлено, при вращении проводников якоря в магнитном поле в каждом проводнике индуцируется э. д. с, направление которой определяется но правилу правой руки. Следовательно, при указанном на рис. 1, б направлении вращение э. д. с. е, индуцированная в проводнике, расположенном под южным полюсом, будет направлена от нас, а э. д. с. е, индуцированная в проводнике, расположенном под северным полюсом, будет направлена к нам. Из рис. 1, б видно, что э. д. с. е, индуцированные в каждом проводнике, направлены против тока i, т. е. они препятствуют его прохождению по проводникам.
Для того чтобы ток i продолжал проходить по проводникам якоря в прежнем направлении, т. е. чтобы электродвигатель продолжал нормально работать и развивать требуемый вращающий момент, необходимо приложить к этим проводникам внешнее напряжение U, направленное навстречу э. д. с. и большее по величине чем суммарная э. д. с. Е, индуцированная во всех последовательно соединенных проводниках обмотки якоря. Следовательно, необходимо подводить к электродвигателю из сети электрическую энергию.
При отсутствии нагрузки (внешнего тормозного момента, приложенного к валу двигателя) электродвигатель потребляет от внешнего источника (сети) небольшое количество электрической энергии и по нему проходит небольшой ток холостого хода. Эта энергия расходуется на покрытие внутренних потерь мощности в машине.
При возрастании нагрузки увеличивается потребляемый электродвигателем ток и развиваемый им электромагнитный вращающий момент. Следовательно, увеличение механической энергии, отдаваемой электродвигателем при возрастании нагрузки, вызывает автоматически увеличение электроэнергии, забираемой им от источника.
Из рассмотренных выше условий работы электрического двигателя следует, что характерным для него является:
1. совпадение по направлению электромагнитного момента М и частоты вращения n. Это характеризует отдачу машиной механической энергии;
2. возникновение в проводниках обмотки якоря э. д. с., направленной против тока i и внешнего напряжения U. Из этого вытекает необходимость получения машиной извне электрической энергии.
Принцип обратимости электрических машин
Рассматривая принцип действия генератора и электродвигателя, мы установили, что устроены они одинаково и что в основе работы этих машин много общего.
Процесс преобразования механической энергии в электрическую в генераторе и электрической энергии в механическую в двигателе связан с индуцированием э. д. с. во вращающихся в магнитном поле проводниках обмотки якоря и возникновением электромагнитных сил в результате взаимодействия магнитного поля и проводников с током.
Отличие генератора от электродвигателя заключается только во взаимном направлении э. д. с, тока, электромагнитного момента и частоты вращения.
Рис. 2. Направление э. д. с. Е, тока I, частоты вращения якоря n и электромагнитного момента М при работе электрической машины постоянного тока в двигательном (а) и генераторном (б) режимах
Для выяснения этого положения рассмотрим работу электрической машины постоянного тока при различных условиях. Если внешнее напряжение U больше суммарной э. д. с. E. во всех последовательно соединенных проводниках обмотки якоря, то ток I будет проходить в указанном на рис. 2, а направлении и машина будет работать электродвигателем, потребляя из сети электрическую энергию и отдавая механическую.
Следовательно, когда э. д. с. Е, индуцированная в проводниках обмотки якоря, становится больше напряжения сети U, машина переходит из двигательного режима работы в генераторный, т. е. при E U машина работает двигателем, при E > U — генератором.
Перевод электрической машины из двигательного режима в генераторный можно осуществить различными способами: уменьшая напряжение U источника, к которому подключена обмотка якоря, или увеличивая э. д. с. E в обмотке якоря.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Понятие энергии применяется во всех науках. При этом известно, что обладающие энергией тела могут производить работу. Закон сохранения энергии гласит, что энергия не исчезает и не может быть создана из ничего, а выступает в различных своих формах (например, в форме тепловой, механической, световой, электрической энергии и т. д.).
Одна форма энергии может переходить в другую, и при этом соблюдаются точные количественные соотношения различных видов энергии. Вообще говоря, переход одной формы энергии в другую никогда не происходит полностью, так как всегда возникают еще и другие (чаще всего нежелательные) виды энергии. Например, в электродвигателе не вся электрическая энергия переходит в механическую, а часть ее переходит в тепловую (нагрев проводников токами, разогрев в результате действия сил трения).
Факт неполного перехода одного вида энергии в другой характеризует коэффициент полезного действия (КПД). Этот коэффициент определяется как отношение полезной энергии к ее общему количеству или же как отношение полезной мощности к общей.
Электрическая энергия имеет то преимущество, что ее можно сравнительно легко и с малыми потерями передавать на большие расстояния, и, кроме того, она имеет чрезвычайно широкий круг применений. Распределением электрической энергии относительно легко управлять, и в известных количествах ее можно аккумулировать и хранить.
В течение одного рабочего дня человек в среднем затрачивает энергию, равную 1000 кДж, или 0,3 кВт. Человеку нужно приблизительно 8000 кДж в виде пищи и 8000 кДж на отопление жилищ, производственных помещений, на приготовление пищи и т. д. Если добавить к этому энергетические затраты в промышленности и на транспорте, то на одного человека ежедневно приходятся энергетические затраты приблизительно в размере 200 000 ккал, или 60 кВт- ч.
Электрическая и механическая энергия
Электрическая энергия преобразуется в механическую в электродвигателях и в меньшей степени в электромагнитах. В обоих случаях используются эффекты, связанные с электромагнитным полем. Потери энергии, т. е. та часть энергии, которая не переходит в желаемую форму, складываются в основном из энергетических затрат на нагрев током проводников и потерь, связанных с трением.
Электрическая и тепловая энергия
Если по проводнику протекает электрический ток, то электроны при своем движении сталкиваются с атомами материала проводника и побуждают их к более интенсивному тепловому движению. При этом электроны теряют часть своей энергии. Возникшая таким образом тепловая энергия, с одной стороны, приводит, например, к повышению температуры деталей и проводов обмоток в электрических машинах, и с другой — к повышению температуры окружающей среды. Следует различать полезную тепловую энергию и тепловую энергию потерь.
В электронагревательных приборах (электрокипятильники, утюги, нагревательные печи и т. д.) желательно стремиться к тому, чтобы электрическая энергия как можно полнее перешла в энергию тепловую. Иначе дело обстоит, например, в случае линий электропередачи или же электродвигателей, где возникающая тепловая энергия представляет собой нежелательное побочное явление, ввиду чего часто должны приниматься меры по ее отводу.
Вследствие возникшего повышения температуры тела тепловая энергия передается окружающей среде. Процесс передачи тепловой энергии реализуется в форме теплопроводности, конвекции и теплового излучения. В большинстве случаев весьма затруднительно дать точную количественную оценку общего количества выделяемой тепловой энергии.
Если какое-либо тело нужно разогреть, то значение его конечной температуры должно быть значительно выше требуемой температуры разогрева. Это необходимо для того, чтобы как можно меньше тепловой энергии передавалось окружающей среде.
Если же, напротив, разогрев температуры тела является нежелательным, то значение конечной температуры системы должно быть малым. Для этой цели создаются условия, способствующие отводу от тела тепловой энергии (большая поверхность контакта тела с окружающей средой, принудительная вентиляция).
Возникающая в электрических проводах тепловая энергия ограничивает значение тока, который допустим в этих проводах. Предельная допускаемая температура провода определяется термической стойкостью его изоляции. Для чего чтобы обеспечить передачу некоторой определенной электрической мощности, следует выбирать как можно меньшее значение тока и соответственно большое значение напряжения. При этих условиях снизятся затраты на материал проводов. Таким образом, электрическую энергию при большой мощности экономически целесообразно передавать при высоких напряжениях.
Переход тепловой энергии в электрическую
Тепловая энергия непосредственно превращается в электрическую в так называемых термоэлектрических преобразователях. Термопара термоэлектрического преобразователя состоит из двух металлических проводников, изготовленных из разных материалов (например, из меди и константана) и спаянных вместе одними своими концами.
При некоторой разности температур между точкой спая и двумя другими концами обоих проводников возникает ЭДС, которая в первом приближении прямо пропорциональна этой разнице температур. Эта термо-ЭДС, равная нескольким милливольтам, может быть зарегистрирована при помощи высокочувствительных вольтметров. Если вольтметр проградуировать в градусах Цельсия, то вместе с термоэлектрическим преобразователем полученное устройство можно применить для непосредственного измерения температуры.
Мощность преобразования невелика, поэтому такие преобразователи практически не применяются как источники электрической энергии. В зависимости от того, какие материалы применены для изготовления термопары, она работает в различных диапазонах температур. Для сравнения можно привести некоторые характеристики различных термопар: термопара медь — константан применима до 600 °С, ЭДС приблизительно 4 мВ на 100 °С; термопара железо — константан применима до 800 °С, ЭДС приблизительно 5 мВ на 100 °С.
Электрическая и световая энергия
Получить световое излучение при помощи электрической энергии можно в результате теплового излучения и путем газового разряда. Тепловое (температурное) излучение возникает в результате разогрева твердых или жидких тел, которые вследствие разогрева испускают электромагнитные волны с различными длинами волн. Распределение интенсивности теплового излучения зависит от температуры.
При повышении температуры максимум интенсивности излучения смещается в сторону электромагнитных колебаний с более короткой длиной волны. При температуре приблизительно 6500 К максимум интенсивности излучения приходится на длину волны 0,55 мкм, т. е. на ту длину волны, которой соответствует максимальная чувствительность человеческого глаза. Однако для нужд освещения никакое твердое тело до такой температуры нагрето, разумеется, быть не может.
Самую большую температуру разогрева выдерживает вольфрам. В вакуумных стеклянных баллонах его можно разогревать до температуры 2100 °С, а при более высоких температурах начинается его испарение. Процесс испарения может быть замедлен путем добавления некоторых газов (азота, криптона), благодаря чему представляется возможным поднять температуру накала до 3000 °С.
Для снижения потерь в лампах накаливания в результате возникающей конвекции нить накаливания выполняется в виде одинарной или двойной спирали. Однако несмотря на эти меры, показатель светоотдачи для ламп накаливания составляет 20 лм/Вт, что еще весьма турах далеко от теоретически достижимого оптимума. Источники теплового излучения имеют весьма малый КПД, так как в них большая часть электрической энергии переходит в энергию тепловую, а не в световую.
Переход световой энергии в электрическую
Световая энергия может переходить в электрическую, причем этот переход возможен двумя различными с физической точки зрения путями. Такое преобразование энергии может быть результатом фотоэлектрического эффекта (фотоэффекта). Для реализации фотоэффекта применяются фототранзисторы, фотодиоды и фоторезисторы.
На границе раздела между некоторыми полупроводниками (германием, кремнием и др.) и металлами образуется граничная зона, в которой атомы обоих контактирующих материалов обмениваются электронами. При падении света на граничную зону электрическое равновесие в ней нарушается, в результате чего возникает ЭДС, под действием которой во внешней замкнутой цепи возникает электрический ток. ЭДС и, следовательно, значение тока зависят от падающего светового потока и длины волны излучения.
В качестве фоторезисторов используются некоторые полупроводниковые материалы. В результате воздействия света на фоторезистор в нем увеличивается число свободных носителей электрических зарядов, что вызывает изменение его электрического сопротивления. Если включить фоторезистор в электрическую цепь, то ток в этой цепи будет зависеть от энергий света, падающего на фоторезистор.
Химическая и электрическая энергия
Водные растворы кислот, оснований и солей (электролиты) проводят в той или иной степени электрический ток, что обусловлено явлением электрической диссоциации веществ. Некоторая часть молекул растворенного вещества (размер этой части определяет степень диссоциации) присутствует в растворе в виде ионов.
Если в растворе находятся два электрода, к которым приложена разность потенциалов, то ионы придут в движение, причем положительно заряженные ионы (катионы) будут двигаться по направлению к катоду, а отрицательно заряженные ионы (анионы) — к аноду.
Достигнув соответствующего электрода, ионы приобретают недостающие им электроны или же, наоборот, отдают лишние и в результате становятся электрически нейтральными. Масса материала, откладывающегося на электродах, прямо пропорциональна перенесенному заряду (закон Фарадея).
В граничной зоне между электродом и электролитом упругость растворения металлов и осмотическое давление противодействуют друг другу. (Осмотическое давление обусловливает осаждение ионов металлов из электролитов на электродах. Этот химический процесс сам является причиной возникновения разницы потенциалов).
Переход электрической энергии в химическую энергию
Для того чтобы в результате движения ионов добиться осаждения вещества на электродах, необходимо затратить электрическую энергию. Этот процесс называется электролизом. Такой переход электрической энергии в химическую находит применение в электрометаллургий для получения металлов (меди, алюминия, цинка и др.) в химически чистом виде.
В гальваностегии активно окисляющиеся металлы покрываются пассивными металлами (золочение, хромирование, никелирование и т. д.). В гальванопластике изготавливают объемные отпечатки (клише) различных тел, причем если такое тело сделано из непроводящего материала, то оно перед изготовлением отпечатка должно быть покрыто проводящим электрический ток слоем.
Переход химической энергии в электрическую
Если опустить в электролит два электрода, изготовленных из различных металлов, то между ними возникнет разность потенциалов, обусловленная различием в упругости растворения этих металлов. Если менаду электродами вне электролита включить приемник электрической энергии, например резистор, то в образовавшейся электрической цепи пойдет ток. Так устроены гальванические элементы (первичные элементы).
Первый медно-цинковый гальванический элемент был изобретен Вольта. В этих элементах происходит преобразование энергии химической в энергию электрическую. Работе гальванических элементов может помешать явление поляризации, возникающее в результате осаждения вещества на электродах.
Все гальванические элементы имеют тот недостаток, что в них химическая энергия преобразуется в электрическую необратимо, т. е. гальванические элементы нельзя заряжать вновь. Этого недостатка лишены аккумуляторы.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети: