Электромагнитный привод это что
Электромагнитный привод это что
Электромагнитный привод представляет собой пружинный привод с электромагнитной защелкой.
Основные технические характеристики электромагнита
Номинальное рабочее напряжение, В
переменного тока 50 Гц 220
постоянного тока 12/24
Номинальная потребляемая мощность,Вт 44,0
Сопротивление катушки, не более, Ом 235
Климатическое исполнение по ГОСТ 15150-69 У3
Степень защиты по ГОСТ 14255 IP-54
Механическая износостойкость,циклов 1,6х106
Приводы оснащаются микропереключателями для контроля положения заслонки клапанов.
Предельные значения тока в цепях контроля от 0,1 А до 2 А при напряжении от 5 В до 36 В для постоянного тока и при напряжении от 5 В до 220 В для переменного тока. Сопротивление электрического контакта микропереключателя 0,05 Ом.
Управляющим сигналом на срабатывание клапана служит подача напряжения на электромагнит. После срабатывания клапана напряжение 220 В с электромагнита рекомендуется снимать для обеспечения безопасности людей.
Пружинные приводы с тепловым замком
Пружинный привод с тепловым замком представляет собой пружину кручения, взведенную в исходном положении заслонки, удерживаемой тепловым замком,срабатывающим при температурах 72 или 141 °С.
По заявке заказчика клапаны с такими приводами могут оснащаться микропереключателями для контроля положения заслонки.
Пружинный привод с тепловым замком используется только для огнезадерживающих клапанов.
Приводы электрических аппаратов
Для замыкания и размыкания контактов электрических аппаратов применяют различные приводы. В ручном приводе усилие передается от руки человека через систему механических передач к контактам. Ручной привод применяют в некоторых разъединителях, рубильниках, выключателях и контроллерах.
Чаще всего ручной привод используют в неавтоматических аппаратах, хотя в некоторых защитных аппаратах включение осуществляется вручную, а отключение — автоматически под действием сжатой пружины. К дистанционным приводам относят электромагнитный, электропневматический, электродвигательный и тепловой приводы.
Наиболее широко применяется в электрических аппаратах электромагнитный привод, в котором используется сила притяжения якоря к сердечнику электромагнита или сила втягивания якоря в катушку соленоида.
Любой ферромагнитный материал, помещенный в магнитное поле, приобретает свойства магнита. Поэтому магнит или электромагнит будет притягивать к себе ферромагнитные тела. На этом свойстве основано устройство разного рода подъемных втягивающих и поворотных электромагнитов.
Сила F, с которой электромагнит или постоянный магнит притягивает к себе ферромагнитное тело — якорь (рис. 1, а),
где В — магнитная индукция в воздушном зазоре; S — площадь сечения полюсов.
Магнитный поток Ф, создаваемый катушкой электромагнита, а следовательно, и магнитная индукция В в воздушном зазоре, как было указано выше, зависят от магнитодвижущей силы катушки, т. е. от числа витков w и тока I, протекающего по ней. Поэтому силу F (тяговое усилие электромагнита) можно регулировать, изменяя ток в его катушке.
Свойства электромагнитного привода характеризуются зависимостью силы F от положения якоря. Эта зависимость называется тяговой характеристикой электромагнитного привода. На ход тяговой характеристики оказывает существенное влияние форма магнитной системы.
Широкое распространение в электрических аппаратах получила магнитная система, состоящая из П-образного сердечника 1 (рис. 1,б) с катушкой 2 и поворотного якоря 4, который соединен с подвижным контактом 3 аппарата.
Примерный вид тяговых характеристик приведен на рис. 2. При полностью разомкнутых контактах воздушный зазор х между якорем и сердечником относительно велик и магнитное сопротивление системы будет наибольшим. Поэтому магнитный поток Ф в воздушном зазоре электромагнита, индукция В и тяговое усилие F будут наименьшими. Однако при правильно рассчитанном приводе это усилие должно обеспечить притяжение якоря к сердечнику.
Рис. 1. Принципиальная схема электромагнита (а) и схема электромагнитного привода с П-образным магнитопроводом (б)
По мере приближения якоря к сердечнику и уменьшения воздушного зазора магнитный поток в зазоре увеличивается и соответственно возрастает тяговое усилие.
Тяговое усилие F, создаваемое приводом, должно быть достаточным для преодоления сил сопротивления подвижной системы аппарата. К ним относятся сила тяжести подвижной системы G, контактное нажатие Q и сила Р, создаваемая возвратной пружиной (см. рис. 1,б). Изменение результирующей силы при перемещении якоря показано на диаграмме (см. рис. 2) ломаной линией 1—2—3—4.
При движении якоря и уменьшении воздушного зазора х до момента соприкосновения контактов привод должен преодолевать только сопротивление, обусловленное массой подвижной системы и действием возвратной пружины (участок 1—2). Далее усилие возрастает скачком на величину начального нажатия контактов (2—3) и растет по мере дальнейшего их перемещения (3—4).
Сопоставление характеристик, показанных на рис. 2, позволяет судить о действии аппарата. Так, если ток в катушке управления создает м. д. с. I2w до, то наибольший зазор х, при котором может включиться аппарат, составляет x2 (точка A), а при меньшей м. д. с. I1w тягового усилия будет недостаточно, и аппарат может включиться только при снижении зазора до х1 (точка Б).
При размыкании электрической цепи катушки привода подвижная система возвращается в исходное положение под действием пружины и силы тяжести. При малых значениях воздушного зазора и возвращающих усилий якорь может удерживаться в промежуточном положении остаточным магнитным потоком. Это явление устраняется установкой фиксированного наименьшего воздушного зазора и регулировкой пружин.
В автоматических выключателях применяют системы с удерживающим электромагнитом (рис. 3, а). Якорь 1 удерживается в притянутом положении к ярму сердечника 5 под действием магнитного потока Ф, создаваемого удерживающей катушкой 4, которая питается от цепи управления. При необходимости отключения подается ток в отключающую катушку 3, создающую магнитный поток Фо, направленный навстречу магнитному потоку Фу катушки 4, который размагничивает якорь и сердечник.
Рис. 2. Тяговые характеристики электромагнитного привода и диаграмма усилий
Рис. 3. Электромагнитный привод с удерживающим электромагнитом (а) и с магнитным шунтом (б)
В результате якорь под действием отключающей пружины 2 отходит от сердечника, и контакты 6 аппарата размыкаются. Быстродействие отключения достигается благодаря тому, что в начале движения подвижной системы действуют наибольшие усилия натянутой пружины, тогда как в обычном электромагнитном приводе, рассмотренном ранее, движение якоря начинается при большом зазоре и малом тяговом усилии.
В качестве отключающей катушки 3 в автоматических выключателях иногда используют шины или размагничивающие витки, по которым проходит ток силовой цепи, защищаемой аппаратом.
При достижении током в катушке 3 некоторого значения, определяемого уставкой аппарата, результирующий магнитный поток Фу — Фо, проходящий через якорь, снижается до такого значения, что больше не может удержать якорь в притянутом состоянии, и аппарат отключается.
В быстродействующих выключателях (рис. 3,б) катушки управления и отключения устанавливают в различных частях магнитопровода, чтобы избежать их взаимного индуктивного влияния, которое замедляет размагничивание сердечника и повышает собственное время выключения, особенно при высоких скоростях нарастания аварийного тока в защищаемой цепи.
Отключающую катушку 3 устанавливают на сердечнике 7, который отделен от основного магнитопровода воздушными зазорами.
Якорь 1, сердечники 5 и 7 выполняют в виде пакетов из листовой стали, а поэтому изменение в них магнитного потока будет точно соответствовать изменению тока в защищаемой цепи. Поток Фо, создаваемый отключающей катушкой 3, замыкается двумя путями: через якорь 1 и по нешихтованному магнитопроводу 8 с катушкой управления 4.
Распределение потока Ф0 по магнитным цепям зависит от скорости его изменения. При больших скоростях нарастания аварийного тока, который в данном случае создает размагничивающий поток Ф0, весь этот поток начинает протекать через якорь, поскольку быстрому изменению части потока Фо, проходящей по сердечнику с катушкой 4, препятствует э. д. с, индуцируемая в удерживающей катушке при быстром изменении проходящего через нее потока. Эта э. д. с. согласно правилу Ленца создает ток, замедляющий нарастание этой части потока Фо.
В результате скорость отключения быстродействующего выключателя будет зависеть от скорости нарастания тока, проходящего через отключающую катушку 3. Чем быстрее нарастает ток, тем при меньшем токе начинается выключение аппарата. Это свойство быстродействующего выключателя весьма ценно, поскольку наибольшую скорость ток имеет в режимах короткого замыкания, и чем раньше выключатель начнет разрывать цепь, тем меньше будет ограничиваемый им ток.
В отдельных случаях требуется замедление работы электрического аппарата. Это выполняется с помощью устройства для получения выдержки времени, под которой понимается время от момента подачи или снятия напряжения с катушки привода аппарата до начала движения контактов. Выдержка времени на отключение электрических аппаратов, управляемых постоянным током, осуществляется с помощью дополнительной короткозамкнутой обмотки, находящейся на одном магнитопроводе с катушкой управления.
При снятии питания с катушки управления магнитный поток, создаваемый этой катушкой, изменяется от своего рабочего значения до нуля.
При изменении этого потока в короткозамкнутой катушке наводится ток такого направления, что его магнитный поток препятствует спаду магнитного потока катушки управления и удерживает якорь электромагнитного привода аппарата в притянутом положении.
Вместо короткозамкнутой катушки может быть установлена на магнитопроводе медная гильза. Действие ее аналогично действию короткозамкнутой катушки. Этого же эффекта можно достичь при замыкании накоротко цепи катушки управления в момент отключения ее от сети.
Для получения выдержки на включение электрического аппарата используют различные механические механизмы времени, принцип действия которых аналогичен часовому механизму.
Электромагнитные приводы аппаратов характеризуются током (или напряжением) срабатывания и возврата. Током (напряжением) срабатывания называется наименьшее значение тока (напряжения), при котором обеспечивается четкое и надежное срабатывание аппарата. Для тяговых аппаратов напряжение срабатывания составляет 75 % номинального напряжения.
Если постепенно плавно снижать ток в катушке, то при определенном его значении аппарат отключится. Наибольшее значение тока (напряжения), при котором аппарат уже отключается, называется током (напряжением) возврата. Ток возврата Iв всегда меньше тока срабатывания Iср, поскольку при включении подвижной системе аппарата необходимо преодолеть силы трения, а также повышенные воздушные зазоры между якорем и ярмом электромагнитной системы.
Отношение тока возврата к току срабатывания называют коэффициентом возврата:
Этот коэффициент всегда меньше единицы.
В простейшем случае пневматический привод состоит из цилиндра 1 (рис. 4) и поршня 2, который связан с подвижным контактом 6. При открытии крана 3 цилиндр соединяется с магистралью сжатого воздуха 4, который поднимает поршень 2 в крайнее верхнее положение и замыкает контакты. При последующем закрытии крана объем цилиндра под поршнем соединяется с атмосферой и поршень под действием возвратной пружины 5 возвращается в исходное состояние, размыкая контакты. Такой привод можно назвать пневматическим приводом с ручным управлением.
Для возможности дистанционного управления подачей сжатого воздуха вместо крана применяют электромагнитные вентили. Электромагнитный вентиль (рис. 5) представляет собой систему двух клапанов (впускного и выпускного) с электромагнитным приводом малой мощности (5—25 Вт). Они подразделяются на включающие и выключающие в зависимости от характера выполняемых ими операций при возбуждении катушки.
Включающий вентиль при возбужденной катушке соединяет цилиндр привода с источником сжатого воздуха, а при невозбужденной катушке сообщает цилиндр с атмосферой, одновременно перекрывая доступ в цилиндр сжатого воздуха. Воздух из резервуара поступает через отверстие В (рис. 5, а) к нижнему клапану 2, который в исходном положении закрыт.
Рис. 4. Пневматический привод
Рис. 5. Включающий (а) и выключающий (б) электромагнитные вентили
Цилиндр пневматического привода, присоединенный к отверстию А, соединяется через открытый клапан 1 с атмосферой через отверстие С. При возбуждении катушки К шток электромагнита давит на верхний клапан 1 и, преодолевая усилие пружины 3, закрывает клапан 1 и открывает клапан 2. При этом сжатый воздух из отверстия В через клапан 2 и отверстие А поступает в цилиндр пневматического привода.
Выключающий вентиль, наоборот, при невозбужденной катушке соединяет цилиндр со сжатым воздухом, а при возбужденной — с атмосферой. В исходном состоянии клапан 1 (рис. 5, б) закрыт, а клапан 2 открыт, создавая путь сжатому воздуху от отверстия В до отверстия А через клапан 2. При возбужденной катушке клапан 1 открывается, соединяя цилиндр с атмосферой, а подача воздуха прекращается клапаном 2.
Для привода ряда электрических аппаратов применяют электрические двигатели с механическими системами, преобразующими вращательное движение вала двигателя в поступательное движение контактной системы. Основным преимуществом электродвигательных электроприводов по сравнению с пневматическими является постоянство их характеристик и возможность их регулирования. По принципу действия эти приводы можно разделить на две группы: с постоянным соединением вала двигателя с электрическим аппаратом и с периодическим сцеплением.
В электрическом аппарате с электродвигательным приводом (рис. 6) вращение от электродвигателя 1 передается через зубчатую передачу 2 к кулачковому валу 3. В определенном положении кулачок вала 4 поднимает шток 5 и замыкает связанный с ним подвижной контакт с неподвижным контактом 6.
В систему привода групповых электрических аппаратов иногда вводятся устройства, обеспечивающие шаговое вращение вала электрического аппарата с остановкой его на каждой позиции. Во время остановки электродвигатель выключается. Такая система обеспечивает точную фиксацию вала электрического аппарата на позициях.
В качестве примера на рис. 7 схематически изображен привод с так называемым мальтийским крестом, который применяется в групповых контроллерах.
Рис. 6. Электродвигательный привод с постоянным соединением валов двигателя и электрического аппарата
Рис. 7. Электродвигательный привод группового контроллера
Рис.8. Тепловой привод с биметаллической пластиной.
Привод состоит из серводвигателя и червячного редуктора с фиксацией позиций с помощью мальтийского креста. Червяк 1 связан с серводвигателем и передает вращение на вал червячного колеса 2, приводя в движение диск 3 с пальцами и фиксатором (рис. 7, а). Вал мальтийского креста 4 не вращается до тех пор, пока палец диска 6 (рис. 7, б) не войдет в паз мальтийского креста.
При дальнейшем вращении палец повернет крест, а следовательно, и вал, на котором он сидит, на 60°, после чего палец выйдет из зацепления, а фиксирующий сектор 7 точно зафиксирует положение вала. При повороте вала червячного колеса на один оборот вал мальтийского креста повернется на 1/3 оборота.
На валу мальтийского креста насажена шестерня 5, которая передает вращение на главный кулачковый вал группового контроллера.
Основным элементом этого привода является биметаллическая пластина, которая состоит из двух слоев различных металлов, жестко связанных по всей поверхности соприкосновения. Эти металлы имеют разные температурные коэффициенты линейного расширения. Слой металла с большим коэффициентом линейного расширения 1 (рис. 8) называется термоактивным слоем в отличие от слоя с меньшим коэффициентом линейного расширения 3, называемого термопассивным.
При нагревании пластины проходящим через нее током или нагревательным элементом (косвенный подогрев) происходит различное удлинение обоих слоев, и пластина изгибается в сторону термопассивного слоя. При таком изгибе могут непосредственно замыкаться или размыкаться контакты 2, соединенные с пластиной, что используется в тепловых реле.
Изгиб пластины может также освобождать защелку рычага электрического аппарата, который затем отключается пружинами. Ток уставки привода регулируют подбором нагревательных элементов (при косвенном подогреве) или изменением раствора контактов (при прямом подогреве). Время возврата биметаллической пластины в исходное положение после срабатывания и охлаждения ее колеблется от 15 с до 1,5 мин.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Электромеханические, электромагнитные, реверсивные привода Автоматизация
Автоматические выключатели iK60 и магнитные пускатели ПМУ
Автоматический выключатель ВАМУ
Блоки расширения мощности БРМ25 и БРМ40
Датчики температуры NTC-10
Датчики температуры PT-1000
Датчики температуры КТД1 и ТД1
Двухходовой шаровый клапан VKR
Двухходовые смесительные узлы СУ2
Контроллер управления резервным вентилятором КР21
Позиционеры ПН1 и ПС1
Приводы без возвратной пружины
Приводы быстрого срабатывания
Приводы для дымовых клапанов
Приводы для установки на огнезадерживающих клапанах
Приводы защищенные IP 66
Приводы очень быстрого срабатывания
Приводы с конденсатором
Приводы с линейным движением штока
Приводы со встроенной пружиной
Пульты управления ПУ
Пульты управления ПУ АТV
Регуляторы температуры МРТ220
Резьбовые трехскоростные циркуляционные насосы GHN
Резьбовые трехскоростные циркуляционные насосы GHN Basic и CL
Симисторные регуляторы скорости СРМ 2,5
Симисторные регуляторы скорости СРМ 2,5щ и СРМ 5щ
Симисторные регуляторы скорости СРС, СРМ
Симисторные регуляторы температуры МРТ380
Симисторный регулятор скорости вращения вентилятора CRM2H
Симисторный регулятор температуры на 220В для электрического калорифера MRT220H
Симисторный регулятор температуры на 380В для электрического калорифера MRT380H
Термостаты защиты от замерзания TF
Трансформаторный регулятор скорости STR-1
Трансформаторы напряжения ТП12
Трансформаторы напряжения ТП20
Трехходовой клапан BUE080F300
Трехходовой шаровый клапан BKR
Трехходовые смесительные узлы СУ3
Трехходовые смесительные узлы СУ3
Трехходовые смесительные узлы СУ3А
Устройства плавного пуска и торможения ATS01 и ATS22
Частотный преобразователь ATV212
Шаровые регуляторы мощности ТТ-S2
Шаровые регуляторы мощности ТТ-S6
Щиты управления с вентилятором ЩУВ
Щиты управления с водяным калорифером ЩУТ
Щиты управления с приточно-вытяжными камерами СВ
Щиты управления с электрическим нагревателем ЩУ
Электроконтактные датчики давления PS500 и PS1500
Электромеханические, электромагнитные, реверсивные привода
ЭЛЕКТРОМАГНИТНЫЙ ПРИВОД
В приводах используются электромагниты постоянного тока на 12 В, а также со встроенным двухполупериодным выпрямителем, работающие от сети переменного тока 50 Гц напряжением 220 В. Приводы оснащаются микропереключателями для контроля положения заслонки клапанов.
Управляющим сигналом на срабатывание клапана служит подача напряжения на электромагнит. После срабатывания клапана напряжение 220 В с электромагнита рекомендуется снимать для обеспечения безопасности людей.
ЭЛЕКТРОМЕХАНИЧЕСКИЙ ПРИВОД С ВОЗВРАТНОЙ ПРУЖИНОЙ
Управляющим сигналом на срабатывание клапанов с электромеханическим приводом является снятие напряжения с привода, после чего возвратная пружина достаточно быстро переводит заслонку из исходного в рабочее (защитное) положение.
При подаче напряжения на привод электродвигатель переводит заслонку в исходное положение и удерживает её в этом положении, потребляя незначительную мощность.
Приводы для противопожарных клапанов также оборудованы механизмом ручного управления, позволяющим перемещать заслонку в исходное положение при отключенном источнике питания.
ЭЛЕКТРОМЕХАНИЧЕСКИЙ РЕВЕРСИВНЫЙ ПРИВОД
Эти приводы перемещают заслонку клапана из исходного положения (закрыто) в рабочее (открыто) и обратно при помощи электродвигателя в зависимости от схемы подключения цепи питания к обмоткам привода. Управляющим сигналом на срабатывание клапана в данном случае является подача напряжения на соответствующие клеммы питания привода.
По этой причине противопожарные клапаны с этими приводами рекомендуется использовать в приточно-вытяжных системах противодымной вентиляции, имеющих несколько клапанов с адресным управлением, например, в системах дымоудаления зданий повышенной этажности, в системах приточной вентиляции незадымляемых лестничных клеток и т.п. При снятии напряжения с реверсивного привода заслонка клапана остается в положении, в котором она находилась в момент отключения напряжения.
Преимуществом реверсивных приводов является невозможность перемещения заслонки противопожарных клапанов из исходного положения в рабочее «открыто» при любых вариантах отключения напряжения на объекте, в том числе при тушении пожара подразделениями противопожарной службы.
ПРИМЕЧАНИЕ
При проектировании систем пожарной безопасности следует обратить внимание на приводы противопожарных клапанов, в связи с требованиями действующих нормативных документов:
Электромагнитные приводы клапанов — типы и принцип работы
Содержание статьи:
Электромагнитный привод – устройство пружинного действия с электромагнитной защёлкой, которые необходимы для управления работой огнезадерживающих и противодымных клапанов. Главные компоненты привода ЭМ – крутящая (возвратная) пружина и электрический магнит, который фиксирует заслонку в исходном состоянии (для дымовых клапанов в закрытом, для огнезащитных – в открытом). В механизме применяются магниты постоянного тока, рассчитанные на напряжение 12В или 24В, и устройства, оснащённые 2-полупериодным выпрямителем, функционирующие от обычной электросети переменного тока с частотой 50 Гц и напряжением 220В.
Электромагнитные приводы огнезадерживающих и дымовых клапанов оборудованы микровыключателями, чтобы управлять их состоянием. Концевые выключатели (КВ1/КВ2) сигнализируют о текущем положении заслонки, которая может быть открыта или закрыта. Диапазон силы тока в сети управления – от 0.1 до 2А (в случае активной нагрузки), от 0.25 до 4А (в случае индуктивной нагрузки с постоянным током), от 0.3 до 2А (при индуктивной нагрузке с переменным током).
Управляющим сигналом на срабатывание заслонки клапана с электромагнитным приводом служит подача питания на э/магнит. Затем необходимо снять напряжение с электромагнита (220В), чтобы обезопасить обслуживающий персонал от удара током.
- В зависимости от назначения и места установки, огнезащитные клапаны с приводом ЭМ, можно разделить на три группы:
Пружинный привод с электромагнитной защелкой и тепловым замком поставляются вместе с нормально-открытыми (НО) противопожарными клапанами, которые противостоят свободному прохождению огня по вентиляционным воздуховодам, т.е. выполняют огнезащитную функцию.
Аналогичное устройство, но без датчика температуры, устанавливается на огнезадерживающие ОЗК с нормально-закрытой заслонкой.
Электромагнитные приводы дымоудаления устанавливаются на дымовые клапаны, у которых заслонка в режиме по умолчании находится в закрытом состоянии.
Пример применения — КЛОП ВИНГС-М
Основным различием между регулирующими устройствами с магнитной защёлкой является напряжение питания: 12В, 24В и 220В. Степень защиты корпуса может различаться, в зависимости от модели, от минимальных IP10 до максимальных IP54 (защита от влаги и пыли). Так же отдельные модификации могут иметь встроенную функцию автоматического отключения и проверки работоспособности (например М183).
Электромеханические противопожарные электроприводы подключаются в сети переменного тока 230В или постоянного тока 24В, приводы с электромагнитной защёлкой имеют такие же параметры, но ещё и возможность подключения 12В (постоянного тока).
Таблица сравнения характеристик | |||
---|---|---|---|
Модель | ЭМК 25-211-3 54У3 | Модель | Dastech FR-05N220S |
Номинальное напряжение | 220В, 50гц | 220В, 50гц | |
Номинальная тяговая сила | 120 Н | Крутящий момент | 5 Нм |
Номинальный ход якоря | 4,5±0,5 мм | Угол поворота | 90 ° (макс 95°) |
Номинальная мощность | 66 Вт | Потребляемая мощность | 5 Вт / 3 Вт |
Время возврата | 2 сек | Время поворота пружины | 20 сек |
Концевые выключатели | есть | есть | |
Масса | 1.45 кг | 1.5 кг |
Вращение заслонки происходит при подаче напряжения на магнит или при разрыве теплового замка (обычно настроены на 72°С). Рычажок магнита высвобождает заслонку, а пружина перемещает заслонку из изначального положения в рабочее. В этом состоянии заслонка закрепляется ригелем. Таким образом, перевод состояния из исходного происходит автоматически (для клапанов НО и НЗ), при работе теплового замка (для НО), дистанционно с пульта управления либо от рычага, кнопки на самом клапане. Обратно – из рабочего состояния в изначальное – исключительно ручным способом, с помощью ключа либо рукоятки.
И несмотря на небольшие размеры, вес вполне сопоставим с электроприводами — 1.4-2 кг. По данному параметру разницы нет.