Энергия электрического поля конденсатора в чем измеряется
Энергия электрического поля
Что такое энергия электрического поля
Электрическое поле — одна из двух компонент электромагнитного поля, представляющая собой векторное поле, существующее вокруг тел или частиц, обладающих электрическим зарядом, а также возникающее при изменении магнитного поля.
Энергия электрического поля — энергия проводника, обладающего зарядом, которая равна работе, затраченной, чтобы зарядить этот проводник.
Физик Майкл Фарадей сделал следующие выводы об электрическом поле:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Электрическое поле обладает рядом свойств:
Тело, обладающее зарядом, действует на другие тела, притягивая и отталкивая их. По отношению к заряженному объекту другие тела поворачиваются и перемещаются. Для любого электрического поля характерен запас энергии. В случае исчезновения электрического поля его электроэнергия трансформируется обратно в работу.
Энергия заряженного конденсатора
Конденсатор — двухполюсник с постоянным или переменным значением емкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Емкость конденсатора измеряется в фарадах.
Компоненты конденсаторов в виде проводников обозначают обкладками. Наиболее простым примером конденсатора является совокупность двух плоских пластин. Данные элементы способны проводить электрический ток и расположены параллельно относительно друг друга. Пластины удалены на небольшое по сравнению с их габаритами расстояние и отделены диэлектрическим материалом.
В плоском конденсаторе можно наблюдать электрическое поле:
Опытным путем было доказано, что конденсатор, обладая электрическим полем, вмещает определенный запас энергии. Для ее расчета необходимо найти сумму работы внешних сил, необходимых для питания конденсатора. Такой процесс является последовательным переносом минимальных порций заряда Δq > 0 с одном пластины на другую.
Один элемент при этом будет постепенно приобретать положительный заряд, а другой — заряжаться отрицательно. Транспортировка заряда осуществляется при условии, что пластины уже обладают неким зарядом q. Разность потенциалов между ними будет определена по формуле:
В процессе переноса некоторого заряда Δq вешние силы совершают работу, которая определяется следующим уравнением:
Энергию We конденсатора, емкость которого составляет С, а заряд равен Q, можно рассчитать с помощью интегрирования предыдущей формулы в пределах от 0 до Q:
Следует учитывать следующее условие:
Тогда энергия заряженного конденсатора будет переписана в другом эквивалентном уравнении:
Электрическая энергия \(We\) будет рассматриваться в качестве потенциальной энергии, которая находится в запасе заряженного конденсатора. Для расчета электрической энергии справедливо применять формулу, с помощью которой определяют потенциальную энергию деформированной пружины \((Ер)\) :
Где k является жесткостью пружины, \(х\) — деформацией, а \(F = kx\) равно внешней силе.
Исходя из современных представлений, электрическую энергию можно наблюдать в области между пластинами конденсатора, то есть в пространстве с электрическим полем. Отсюда появилось название энергии электрического поля.
Как рассчитать энергию электрического поля через напряженность, формула
В качестве примера можно рассмотреть плоский конденсатор. Его однородное электрическое поле в этом случае будет обладать напряженностью. Данная величина определяется по формуле:
Емкость конденсатора будет рассчитываться таким образом:
Исходя из приведенных равенств, энергия электрического поля будет равна:
Где V = Sd является объемом пространства между пластинами конденсатора, который вмещает электрическое поле.
Объемная плотность электрической энергии
Расчет физической величины We выглядит следующим образом:
Таким образом, \(We\) представляет собой электрическую или потенциальную энергию единицы объема пространства, в котором сформировано электрическое поле. Данная величина — объемная плотность электрической энергии. Для того чтобы найти энергию поля, созданного путем распределения электрически заряженных частиц в пространстве, необходимо интегрировать объемную плотность по всему объему, для которого характерно наличие электрического поля.
Как рассчитать энергию заряженного конденсатора
Что такое энергия заряженного конденсатора
Конденсатор состоит из двух проводников, разделенных слоем диэлектрика.
Простейший конденсатор — две металлические пластины-обкладки, расположенные параллельно, с тонкой прослойкой воздуха между ними. Когда заряды пластин противоположны по знаку, электрическое поле оказывается сосредоточено внутри конденсатора и почти не взаимодействует с внешним миром, что позволяет накапливать на пластинах заряд. Для описания работы, которую нужно затратить, чтобы разделить положительные и отрицательные заряды и полностью зарядить конденсатор, вводится понятие энергии.
Энергия заряженного конденсатора равна работе внешних сил, затраченной, чтобы зарядить его.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Где сосредоточена, в каких единицах измеряется
Вся энергия конденсатора сосредоточена в электрическом поле его пластин. Единица измерения СИ — джоуль.
Чему равна энергия заряженного конденсатора
Согласно закону сохранения энергии, энергия заряженного конденсатора равна работе, которую совершит электрическое поле при сближении пластин вплотную.
По какой формуле можно найти
Основная характеристика поля, напряженность, создаваемая одной из пластин, равна половине напряженности поля во всем конденсаторе. Заряд q, распределенный по поверхности одной пластины, находится в однородном электрическом поле другой. Потенциальную энергию заряда можно найти по формуле:
где Е — напряженность поля во всем конденсаторе, а d — расстояние между пластинами.
В этой формуле могут использоваться другие известные величины, например, разность потенциалов между пластинами, обозначаемая буквой U. Чтобы вычислить ее, нужно умножить напряженность поля Е на расстояние между пластинами d. Тогда формула для вычисления энергии будет иметь вид:
Таким образом, для решения задач можно использовать три выражения:
Эти формулы справедливы для любого конденсатора, не только для плоского. Если малыми порциями \(-\triangle q\) переносить отрицательный заряд с одной пластины на другую, поле внутри конденсатора будет совершать работу. Если порции заряда малы, для простоты расчетов можно предположить, что напряжение между пластинами не меняется. Тогда работа:
\(\triangle W_п\;=\;\frac1Cq\triangle q\)
Применение конденсаторов
Емкость конденсатора не слишком велика, но энергия при разрядке отдается почти мгновенно. Свойство конденсаторов быстро выдавать импульс большой мощности находит применение в лампах-вспышках для фотографирования, электромагнитных ускорителях, импульсных лазерах.Примером может служить генератор Ван де Граафа, позволяющий создавать в лабораторных условиях напряжение в миллионы вольт, чтобы моделировать разряды молний. Также конденсаторы используют в радиотехнике.
Существует тип компьютерных клавиатур, целиком состоящий из конденсаторов под каждой клавишей, при нажатии которой его пластины сближаются. Электронная схема, к которой они подсоединены, распознает, какую клавишу нажали, и передает эту информацию дальше.
Электростатика. Энергия поля конденсатора.
Энергия конденсатора равняется работе, выполненной электрическим полем при сдвиге пластин конденсатора вплотную, либо равняется работе по разделению положительных и отрицательных зарядов, требуемой при зарядке конденсатора.
Основываясь на текущих концепциях, электрическая энергия конденсатора сосредоточенного в пространстве между обкладками конденсатора, иначе говоря, в электрическом поле. Вследствие чего ее принято обозначать энергией электрического поля. Это достаточно просто продемонстрировать на модели заряженного плоского конденсатора.
Напряженность однородного поля в плоском конденсаторе будет:
из этого делаем вывод:
V = Sd – объем пространства между обкладками, насыщенный электрическим полем;
d — промежуток между обкладками конденсатора.
Из полученного соотношения видно, что физическая величина:
является электрической (потенциальной) энергией единицы объема пространства, в котором создано электрическое поле. Ее принято обозначать как объемную плотность электрической энергии.
Конденсатор. Энергия электрического поля
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: электрическая ёмкость, конденсатор, энергия электрического поля конденсатора.
Предыдущие две статьи были посвящены отдельному рассмотрению того, каким образом ведут себя в электрическом поле проводники и каким образом — диэлектрики. Сейчас нам понадобится объединить эти знания. Дело в том, что большое практическое значение имеет совместное использование проводников и диэлектриков в специальных устройствах — конденсаторах.
Но прежде введём понятие электрической ёмкости.
Ёмкость уединённого проводника
Предположим, что заряженный проводник расположен настолько далеко от всех остальных тел, что взаимодействие зарядов проводника с окружающими телами можно не принимать во внимание. В таком случае проводник называется уединённым.
Величина называется электрической ёмкостью проводника и равна отношению заряда проводника к его потенциалу:
Например, потенциал уединённого шара в вакууме равен:
где — заряд шара, — его радиус. Отсюда ёмкость шара:
(2)
Если шар окружён средой-диэлектриком с диэлектрической проницаемостью , то его потенциал уменьшается в
раз:
Соответственно, ёмкость шара в раз увеличивается:
(3)
Увеличение ёмкости при наличии диэлектрика — важнейший факт. Мы ещё встретимся с ним при рассмотрении конденсаторов.
Из формул (2) и (3) мы видим, что ёмкость шара зависит только от его радиуса и диэлектрической проницаемости окружающей среды. То же самое будет и в общем случае: ёмкость уединённого проводника не зависит от его заряда; она определяется лишь размерами и формой проводника, а также диэлектрической проницаемостью среды, окружающей проводник. От вещества проводника ёмкость также не зависит.
В чём смысл понятия ёмкости? Ёмкость показывает, какой заряд нужно сообщить проводнику, чтобы увеличить его потенциал на В. Чем больше ёмкость — тем, соответственно, больший заряд требуется поместить для этого на проводник.
Единицей измерения ёмкости служит фарад (Ф). Из определения ёмкости (1) видно, что Ф = Кл/В.
Давайте ради интереса вычислим ёмкость земного шара (он является проводником!). Радиус считаем приближённо равным км.
мкФ.
Как видите, Ф — это очень большая ёмкость.
Единица измерения ёмкости полезна ещё и тем, что позволяет сильно сэкономить на обозначении размерности диэлектрической постоянной . В самом деле, выразим
из формулы (2) :
Следовательно, диэлектрическая постоянная может измеряться в Ф/м:
Ф.
Так легче запомнить, не правда ли?
Ёмкость плоского конденсатора
Ёмкость уединённого проводника на практике используется редко. В обычных ситуациях проводники не являются уединёнными. Заряженный проводник взаимодействует с окружающими телами и наводит на них заряды, а потенциал поля этих индуцированных зарядов (по принципу суперпозиции!) изменяет потенциал самого проводника. В таком случае уже нельзя утверждать, что потенциал проводника будет прямо пропорционален его заряду, и понятие ёмкости проводника самого по себе фактически утрачивает смысл.
Можно, однако, создать систему заряженных проводников, которая даже при накоплении на них значительного заряда почти не взаимодействует с окружающими телами. Тогда мы сможем снова говорить о ёмкости — но на сей раз о ёмкости этой системы проводников.
Наиболее простым и важным примером такой системы является плоский конденсатор. Он состоит из двух параллельных металлических пластин (называемых обкладками), разделённых слоем диэлектрика. При этом расстояние между пластинами много меньше их собственных размеров.
Для начала рассмотрим воздушный конденсатор, у которого между обкладками находится воздух
Пусть — площадь каждой обкладки. Найдём поле, создаваемое обкладками в окружающем пространстве.
Поскольку размеры обкладок велики по сравнению с расстоянием между ними, поле каждой обкладки вдали от её краёв можно считать однородным полем бесконечной заряженной плоскости:
Здесь — напряжённость поля положительной обкладки, — напряженность поля отрицательной обкладки, — поверхностная плотность зарядов на обкладке:
На рис. 1 (слева) изображены векторы напряжённости поля каждой обкладки в трёх областях: слева от конденсатора, внутри конденсатора и справа от конденсатора.
Рис. 1. Электрическое поле плоского конденсатора
Согласно принципу суперпозиции, для результирующего поля имеем:
Нетрудно видеть, что слева и справа от конденсатора поле обращается в нуль (поля обкладок погашают друг друга):
Внутри конденсатора поле удваивается:
(4)
Результирующее поле обкладок плоского конденсатора изображено на рис. 1 справа. Итак:
Не будем забывать, однако, что данное утверждение выведено из предположения, будто обкладки являются бесконечными плоскостями. На самом деле их размеры конечны, и вблизи краёв обкладок возникают так называемые краевые эффекты: поле отличается от однородного и проникает в наружное пространство конденсатора. Но в большинстве ситуаций (и уж тем более в задачах ЕГЭ по физике) краевыми эффектами можно пренебречь и действовать так, словно утверждение, выделенное курсивом, является верным без всяких оговорок.
(5)
Разность потенциалов между обкладками конденсатора, как видим, прямо пропорциональна заряду конденсатора. Данное утверждение аналогично утверждению «потенциал уединённого проводника прямо пропорционален заряду проводника», с которого и начался весь разговор о ёмкости. Продолжая эту аналогию, определяем ёмкость конденсатора как отношение заряда конденсатора к разности потенциалов между его обкладками:
Из формул (6) и (5) легко находим ёмкость плоского воздушного конденсатора:
(7)
Она зависит только от геометрических характеристик конденсатора: площади обкладок и расстояния между ними.
Предположим теперь, что пространство между обкладками заполнено диэлектриком с диэлектрической проницаемостью . Как изменится ёмкость конденсатора?
Напряжённость поля внутри конденсатора уменьшится в раз, так что вместо формулы (4) теперь имеем:
(8)
Соответственно, напряжение на конденсаторе:
(9)
Отсюда ёмкость плоского конденсатора с диэлектриком:
(10)
Она зависит от геометрических характеристик конденсатора (площади обкладок и расстояния между ними) и от диэлектрической проницаемости диэлектрика, заполняющего конденсатор.
Важное следствие формулы (10) : заполнение конденсатора диэлектриком увеличивает его ёмкость.
Энергия заряженного конденсатора
Заряженный конденсатор обладает энергией. В этом можно убедиться на опыте. Если зарядить конденсатор и замкнуть его на лампочку, то (при условии, что ёмкость конденсатора достаточно велика) лампочка ненадолго загорится.
Следовательно, в заряженном конденсаторе запасена энергия, которая и выделяется при его разрядке. Нетрудно понять, что этой энергией является потенциальная энергия взаимодействия обкладок конденсатора — ведь обкладки, будучи заряжены разноимённо, притягиваются друг к другу.
Мы сейчас вычислим эту энергию, а затем увидим, что существует и более глубокое понимание происхождения энергии заряженного конденсатора.
Возьмём на второй обкладке настолько маленькую площадку, что заряд этой площадки можно считать точечным. Данный заряд притягивается к первой обкладке с силой
где — напряжённость поля первой обкладки:
Направлена эта сила параллельно линиям поля (т. е. перпендикулярно пластинам).
(11)
С учётом формул (11) и (7) имеем:
Это можно переписать следующим образом:
Допустим теперь, что конденсатор заполнен диэлектриком с диэлектрической проницаемостью . Сила притяжения обкладок уменьшится в
раз, и вместо (11) получим:
Итак, формулы (12) — (14) универсальны: они справедливы как для воздушного конденсатора, так и для конденсатора с диэлектриком.
Энергия электрического поля
Мы обещали, что после вычисления энергии конденсатора дадим более глубокое истолкование происхождения этой энергии. Что ж, приступим.
Рассмотрим воздушный конденсатор и преобразуем формулу (14) для его энергии:
Но — объём конденсатора. Получаем:
(15)
Энергия конденсатора есть не что иное, как энергия заключённого внутри него электрического поля.
Итак, электрическое поле само по себе обладает энергией. Ничего удивительного для нас тут нет. Радиоволны, солнечный свет — это примеры распространения энергии, переносимой в пространстве электромагнитными волнами.
Величина — энергия единицы объёма поля — называется объёмной плотностью энергии. Из формулы (15) получим:
(16)
В этой формуле не осталось вообще никаких геометрических величин. Она даёт максимально чистую связь энергии электрического поля и его напряжённости.
Если конденсатор заполнен диэлектриком, то его ёмкость увеличивается в раз, и вместо формул (15) и (16) будем иметь:
(17)
(18)
Как видим, энергия электрического поля зависит ещё и от диэлектрической проницаемости среды, в которой поле находится.
Замечательно, что полученные формулы для энергии и плотности энергии выходят далеко за пределы электростатики: они справедливы не только для электростатического поля, но и для электрических полей, меняющихся во времени.