Эвм для чего используется

Электронно-вычислительная машина

Согласно Большому энциклопедическому словарю,2000 ЭВМ — то же, что компьютер.

Задолго до появления ЭВМ существовали другие виды вычислительных машин.

Связанные понятия

Упоминания в литературе

Связанные понятия (продолжение)

Существуют и иные значения этого слова, см. Мир«МИР» (сокращение от «Машина для Инженерных Расчётов») — серия электронных вычислительных машин, созданных Институтом кибернетики Академии наук Украины, под руководством академика В. М. Глушкова.

Необходимость разделять вычислительные задачи и выполнять их одновременно (параллельно) возникла задолго до появления первых вычислительных машин.

Вычислительная техника является важнейшим компонентом процесса вычислений и обработки данных. Первыми приспособлениями для вычислений были, вероятно, всем известные счётные палочки, которые и сегодня используются в начальных классах многих школ для обучения счёту. Развиваясь, эти приспособления становились более сложными, например, такими как финикийские глиняные фигурки, также предназначаемые для наглядного представления количества считаемых предметов. Такими приспособлениями, похоже, пользовались.

Интегра́льная (микро)схе́ма (ИС, ИМС, IC (англ.)), микросхе́ма, м/сх, чип (англ. chip «тонкая пластинка»: первоначально термин относился к пластинке кристалла микросхемы) — микроэлектронное устройство — электронная схема произвольной сложности (кристалл), изготовленная на полупроводниковой подложке (пластине или плёнке) и помещённая в неразборный корпус или без такового, в случае вхождения в состав микросборки.

Система числового программного управления (СЧПУ) «Электроника НЦ-31» — это система контурного управления типа ЧПУ. Она предназначена для оперативного управления станками со следящими электроприводами по двум линейным осям, главным приводом и измерительными фотоимпульсными датчиками. Система позволяет создавать мультипроцессорные конфигурации (до четырёх процессоров), стандартная корзина позволяет использовать два процессора, но во всех станочных применениях используется однопроцессорная конфигурация.

Источник

Что такое ЭВМ? Поколения ЭВМ.

Каждый из нас слышал такой термин, как ЭВМ. Однако что это такое, точно сказать может не каждый. Также не все представляют, какую историю прошла данная техника, чтобы стать привычной для сегодняшнего пользователя.

Эвм для чего используется. Смотреть фото Эвм для чего используется. Смотреть картинку Эвм для чего используется. Картинка про Эвм для чего используется. Фото Эвм для чего используется

Определение

Первое поколение

Ламповые ЭВМ стали первыми вычислительными машинами, выпуск которых начался в начале 50-х годов прошлого столетия. Примерно в то время люди начале массово узнавать, что такое ЭВМ.

Эвм для чего используется. Смотреть фото Эвм для чего используется. Смотреть картинку Эвм для чего используется. Картинка про Эвм для чего используется. Фото Эвм для чего используется

В Соединенных Штатах о том, что такое ЭВМ, знали также многие. Представителем первого поколения электронных вычислительных машин стал «Эдвак». Однако он значительно уступал по параметрам отечественному компьютеру. Связано это было с тем, что БЭСМ-2 применял новые принципы построения. Советская машина могла совершать около десяти тысяч операций в секунду.

Структурно первое поколения ЭВМ было очень схожим с машиной фон Неймана. Конечно, параметры были во много раз хуже, чем у современных самых малофункциональных представителей компьютерной техники. Программы для ЭВМ первого поколения составлялись при помощи машинного кода.

Представители таких машин отличались огромными габаритами и высоким потреблением энергии. Цена машины являлась неподъемной для простых пользователей. Кроме этого, управлять ими мог только специально обученный оператор ЭВМ, так как все программы были сложны для понимания. Поэтому использовались они лишь учеными для каких-либо научно-технических задач.

Вскоре появились первые языки программирования: символическое кодирование и автокоды.

Второе поколение

В 1948 году был создан первый транзистор. Разработкой занимались физики Джон Бардин и Уильям Шокли, а также экспериментатор Уолтер Браттейн. Первые представители данного поколения ЭВМ, которые были созданы на основе транзисторов в конце 50-х годов, а к середине 60-х стали появляться компьютеры, имеющие значительно меньшие габариты.

Главной отличительной чертой транзистора является то, что он способен работать как сорок ламп, но при этом скорость у него выше. Кроме того, эти устройства требовали гораздо меньше энергии и практически не грелись. Параллельно с этим увеличивался и объем памяти для хранения информации. Благодаря стараниям ученых компьютеры получили быстродействие, равное миллиону операций в секунду.

Американским представителем является устройство ЭВМ «Атлас». Советский Союз может быть представлен машиной БЭСМ-6.

Эвм для чего используется. Смотреть фото Эвм для чего используется. Смотреть картинку Эвм для чего используется. Картинка про Эвм для чего используется. Фото Эвм для чего используется

Все улучшения, произошедшие с появлением транзисторов, позволили значительно расширить сферы применения ЭВМ. Активно стали создаваться языки программирования для различных целей. Примером могут выступать фортран и кобол.

Однако по-прежнему машины страдали от нехватки памяти. Для экономии пространства стали разрабатывать операционные системы, которые позволяли более рационально распределять ресурсы.

Третье поколение

Данное поколение представлено, прежде всего, ЭВМ, которые были основаны на интегральных микросхемах. При помощи ИС удалось добиться еще большего быстродействия, уменьшить размер, увеличить надежность, а также сократить стоимость устройства.

Эвм для чего используется. Смотреть фото Эвм для чего используется. Смотреть картинку Эвм для чего используется. Картинка про Эвм для чего используется. Фото Эвм для чего используется

Вскоре начали появляться первые так называемые мини-ЭВМ. Это были простые, небольшие, надежные и недорогие машинки. Первоначально они предназначались для создания контроллеров, но вскоре потребители поняли, что их можно использовать как обычные вычислительные машины. Благодаря низкой цене и простоте мини-ЭВМ появлялись практически у каждой компании разработчиков, исследователей, инженеров и так далее.

Четвертое поколение

Значительные успехи в разработках ЭВМ привели к появлению больших интегральных схем. Представляли они собой кристалл, который включал в себя тысячи электронных элементов. Благодаря низкой стоимости и неплохим параметрам ЭВМ на БИС получили огромную популярность.

В апреле 1976 года два друга разработали первый в мире персональный компьютер. Известные многим Стив Джобс и Стив Возняк трудились вечерами в гараже над созданием ПК, который впоследствии получил название Appl и обрел огромную популярность. Уже через год была создана одноименная компания, которая занялась выпуском персональных компьютеров.

Эвм для чего используется. Смотреть фото Эвм для чего используется. Смотреть картинку Эвм для чего используется. Картинка про Эвм для чего используется. Фото Эвм для чего используется

Пятое поколение

Переход к пятому поколению ЭВМ произошел в конце 80-х годов с появлением микропроцессоров. Именно тогда состоялся переход к работе в оболочках и программных средах. Производительность машин выросла до 10 9 операций в секунду. Разрабатывались ЭВМ, направленные на языки высокого уровня.

Благодаря операционным системам, которые обеспечили простое управление устройством, компьютер стал незаменим практически для каждой сферы человеческой жизни.

Источник

Область применения эвм

1.3. Область применения эвм

По назначению ЭВМ можно разделить на три группы: универсальные (общего назначения), проблемно-ориентированные и специализированные.

Универсальные ЭВМ предназначены для решения самых различных инженерно-технических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах.

Проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам; они обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами.

К проблемно-ориентированным ЭВМ можно отнести, в частности, всевозможные управляющие вычислительные комплексы.

Специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций. Такая узкая ориентация ЭВМ позволяет четко специализировать их структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы.

К специализированным ЭВМ можно отнести, например, программируемые микропроцессоры специального назначения; адаптеры и контроллеры, выполняющие логические функции управления отдельными несложными техническими устройствами согласования и сопряжения работы узлов вычислительных систем.

Применение ЭВМ очень распространено практически во всех областях жизни человека.

Так, например ЭВМ применяют:

1.В промышленности (специализированные ЭВМ)

2. В технике (бортовые компьютеры)

3. Практически в любой производственной сфере и сфере услуг (персональные компьютеры и ноутбуки)

4. В сети Интернет (серверы)

5. В повседневной жизни.

возможности настройки ос Windows XP (Windows Vista)

Операционная система Microsoft Windows XP (от англ. eXPerience — опыт) является ОС семейства Windows предыдущего поколения, созданной на базе технологии NT.

Для запуска Microsoft Windows XP необходим персональный компьютер, отвечающий следующим минимальным системным требованиям: процессор — Pentium-совместимый, тактовая частота от 233 МГц и выше; объем оперативной памяти — 64 Мбайт; свободное дисковое пространство — 1,5 Гбайт. Однако для стабильной и быстрой работы рекомендуется устанавливать данную операционную систему на компьютер со следующими оптимальными характеристиками: процессор — Pentium-II-совместимый (или выше), тактовая частота от 500 МГц и выше; объем оперативной памяти — 256 Мбайт; свободное дисковое пространство — 2 Гбайт. Устройство для чтения компакт-дисков (CD-ROM), модем со скоростью не менее 56 Kbps.

Теперь при нажатии кнопки Пуск появляется динамическое меню, содержащее значки лишь пяти программ, которыми пользуется наиболее часто. Благодаря этому можно начать работу с нужными приложениями значительно быстрее. Здесь же расположены значки браузера Microsoft Internet Explorer 6 и почтового клиента Outlook Express 6, кнопки Выход из системы (Log Off) и Выключение компьютера (Turn Off Computer), позволяющие завершить текущий сеанс работы с Windows и выключить компьютер.

В среде Microsoft Windows пользователю часто приходится одновременно работать с несколькими документами или набором различных программ. При этом неактивные приложения сворачиваются в Панель задач, вследствие чего она рано или поздно переполняется значками, и переключение между задачами становится затруднительным. Для того чтобы разгрузить Панель задач и освободить больше рабочего пространства для отображения значков запущенных приложений, в Windows XP используется так называемый алгоритм группировки задач, согласно которому однотипные программы, работающие на компьютере одновременно, объединяются в логическую визуальную группу.

Операционная система Windows XP включает в себя множество различных настроек. Некоторые из них перечислены ниже:

Очистка файла подкачки перед перезагрузкой системы

Отключить встроенный отладчик Dr. Watson

Отключить запись последнего доступа к файлам (NTFS)

Отключить System Files Protection (SFC)

Включить поддержку UDMA-66 на чипсетах Intel

Включать Num Lock при загрузке

Автоматически выгружать не используемые библиотеки

Отключить слежение Windows XP за пользователем

Запускать 16-битные программы в отдельных процессах

Не отсылать в Microsoft отчеты об ошибках

Пароль при выходе из Ждущего режима

Оптимизировать системные файлы во время загрузки (boot defrag)

Сообщения об ошибках

Путь к дистрибутиву Windows и системным папкам для активного пользователя

Запись консоли восстановления на жесткий диск

Автоматические обновления Windows

Windows Prefetcher сервис

Показывать выполняемые команды при запуске и выходе из системы

Автоматический вход в систему без ввода пароля

Показывать сообщение при входе в систему

Не показывать имя последнего пользователя

Использовать страницу приветствия

Использовать быстрое переключение пользователей

Отключить неиспользуемые устройства в Device Manager

Увеличиваем производительность NTFS

Ускорить действие файловой системы

Отключить Universal Plug and Play

Изменяем приоритет запросов на прерывание (IRQ)

Работа Windows с zip-архивами

Отключить поддержку zip-архивов

Отключить восстановление системы

Время жизни точек восстановления

Автоматически перезагрузить компьютер

Записать событие в системный журнал

Отправить административное оповещение

Запись отладочной информации

Параметры работы с памятью

Не использовать файл подкачки для хранения ядра системы

Большой системный кэш

Выделение памяти для операций ввода-вывода

Пути к системным утилитам

Использовать свою программу дефрагментации диска

Использовать свою программу очистки системы

Использовать свою программу для архивации данных

Рассмотрим примеры как настроить:

1. Автоматические обновления Windows

Windows XP использует следующие значения:

Отключить автоматические обновления

Уведомлять о возможности загрузки обновлений

Загружать обновления, затем уведомлять о готовности к установке

AUOptions = 3 и другие значения

2. Автоматический вход в систему без ввода пароля

STRING DefaultUserName, имя пользователя, которое используется при автоматическом входе в систему

STRING DefaultUserPassword, пароль пользователя

STRING DefaultDomainName, домен по умолчанию, используется для компьютеров в сети

Примечание: пароль храниться в реестре в незашифрованном виде.

Если при загрузке компьютера отключен показ предыдущего имени (параметр DontDisplayLastUserName) автоматический вход в систему работать не будет!

3. Установка времени и даты

2. Дорот В. А., Новиков Ф. Н. Толковый словарь современной компьютерной лексики. 2-е изд. СПб.: BHV, 2001.

4. Информатика: Учебник. Под ред. Макаровой Н. В. М.: Финансы и статистика, 2000.

5. Лесничая И.Г. Информатика и информационные технологии. Учебное пособие. М.: Издательство Эксмо, 2007

6. Попов В.Б. Основы компьютерных технологий. М. : Финансы и статистика, 2002.

Источник

РОЛЬ ЭВМ В СОВРЕМЕННОМ МИРЕ. ОБЛАСТИ ПРИМЕНЕНИЯ

Электронно-вычислительные машины (ЭВМ) проникли во многие сферы человеческой деятельности. Использование ЭВМ позволяет переложить обработку информации на автоматические устройства, способные достаточно долго работать без участия человека и со скоростью, в несколько миллионов раз превышающей скорость обработки информации человеком.
Универсальность ЭВМ, её способность к целенаправленной переработке различных видов информации и объясняют происходящий сейчас стремительный процесс внедрения компьютеров в самые разные сферы деятельности человека в современном обществе. Область применений компьютеров чрезвычайно широка. Они применяются везде, где можно создать математические модели для каких-нибудь явлений.
Компьютеры используются в медицине для установки диагноза. Использование компьютера позволяет получать изображение внутренних частей непрозрачных тел. Это называется томография. Томография позволяет обнаружить признаки заболевания, скрытые в тканях человеческого организма.

С помощью ЭВМ решается задача по прогнозу погоды. Она собирает и анализирует информацию, получаемую со спутников и метеостанций, выполняет огромный объём вычислений, необходимых для решения уравнений, возникающих при математическом моделировании процессов в атмосфере и океане, и, наконец, представляет полученные результаты.
ЭВМ часто используются для анализа данных. Они хранят наборы данных и сравнивают их с вводимой информацией.

Компьютеры обрабатывают счета и накладные для фирм и организаций, а их графические возможности используются архитекторами и проектировщиками. ЭВМ может выводить трёхмерное изображение объектов и вращать их с тем, чтобы конструктор мог рассмотреть эти объекты под разными углами.
ЭВМ применяются в транспортных системах. Компьютер используется в кассах аэрокомпаний и железнодорожного транспорта.
Домашний компьютер может оказать неоценимую пользу, стать источником новых знаний, а нередко и доходов. Умение работать на ПК (персональном компьютере) ценится работодателями, и прежде всего солидными и преуспевающими фирмами.
Биотехнология, атомная, энергетическая, технология новых материалов, безотходных производств и изготовления лекарственных препаратов невозможны без использования компьютеризированных информационных систем. Компьютеры объединяют системы связи (телефон, телевидение, телефакс, спутниковую связь), а также ведомственные, бытовые и научные базы данных и знаний.

Дата добавления: 2016-06-13 ; просмотров: 6635 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

21. ЭВМ. Понятие. Основные характеристики и архитектура. История создания вычислительных машин. Поколения ЭВМ. Области применения и классификация ЭВМ.

Под пользователем понимают человека, в интересах которого проводится обработка данных на ЭВМ.

К основным характеристикам ЭВМ относятся:

Сравнение по быстродействию различных типов ЭВМ, не обеспечивает достоверных оценок. Очень часто вместо характеристики быстродействия используют связанную с ней характеристику производительность.

Применяются также относительные характеристики производительности. Фирма Intel для оценки процессоров предложила тест, получивший название индекс iCOMP (Intel ComparativeMicroprocessor Performance). При его определении учитываются четыре главных аспекта производительности: работа с целыми числами, с плавающей запятой, графикой и видео. Данные имеют 16- и 32-разрядной представление. Каждый из восьми параметров при вычислении участвует со своим весовым коэффициентом, определяемым по усредненному соотношению между этими операциями в реальных задачах.

Емкость запоминающих устройств. Емкость памяти измеряется количеством структурных единиц информации, которое может одновременно находится в памяти. Этот показатель позволяет определить, какой набор программ и данных может быть одновременно размещен в памяти.

Емкость оперативной памяти (ОЗУ) и емкость внешней памяти (ВЗУ) характеризуются отдельно. Этот показатель очень важен для определения, какие программные пакеты и их приложения могут одновременно обрабатываться в машине.

Высокая надежность ЭВМ закладывается в процессе ее производства. Применеие сверхбольшие интегральные схемы (СБИС) резко сокращают число используемых интегральных схем, а значит, и число их соединений друг с другом. Модульный принцип построения позволяет легко проверять и контролировать работу всех устройств, проводить диагностику и устранение неисправностей.

Точность получения результатов обработки в основном определяется разрядностью ЭВМ, а также используемыми структурными единицами представления информации (байтом, словом, двойным словом).

Достоверность характеризуется вероятностью получения безошибочных результатов. Заданный уровень достоверности обеспечивается аппаратурно-программными средствами контроля самой ЭВМ. Возможны методы контроля достоверности путем решения эталонных задач и повторных расчетов. В особо ответственных случаях проводятся контрольные решения на других ЭВМ и сравнение результатов.

Обобщенная структура ЭВМ

Эвм для чего используется. Смотреть фото Эвм для чего используется. Смотреть картинку Эвм для чего используется. Картинка про Эвм для чего используется. Фото Эвм для чего используется

Структуру ЭВМ определяет следующая группа характеристик:

· технические и эксплуатационные характеристики ЭВМ (быстродействие и производительность, показатели надежности, достоверности, точности, емкость оперативной и внешней памяти, габаритные размеры, стоимость технических и программных средств, особенности эксплуатации т.д.);

· характеристики и состав функциональных модулей базовой конфигурации ЭВМ; возможность расширения состава технических и программных средств; возможность изменения структуры;

· состав программного обеспечения ЭВМ и сервисных услуг (операционная система или среда, пакеты прикладных программ, средства автоматизации программирования).

Поколения эвм

В течение всего периода эволюции компьютерных систем прослеживается тенденция к повышению скорости обработки информации процессором, уменьшение физических размеров компонентов, росту объема памяти и повышению пропускной способности каналов ввода-вывода.

Не отрицая того факта, что одной из причин повышения производительности процессоров явился прогресс в области микроэлектроники, в частности миниатюризация электронных компонентов, все же отметим, что не меньшее, если не большее, влияние на этот процесс, особенно в последние годы, оказали новые идеи в отношении структурной организации процессора, в частности широкое использование принципов конвейерной и параллельной обработки и внедрение технологии предпочтительного выбора направления ветвления программы, т.е. выполнение условных переходов на основании прогнозных оценок еще до формирования условий перехода. Все эти идеи преследуют одну цель – максимально сократить время простоя процессора.

Важнейшей проблемой, с которой сталкивается любой конструктор компьютерных систем, является достижение баланса характеристик производительности отдельных компонентов системы, т.е. такой подбор компонентов, при котором ни один компонент не простаивает, дожидаясь, пока за ним «поспеют» другие. В частности, производительность процессора растет быстрее, чем быстродействие оперативной памяти. Конструктор имеет в своем арсенале множество методов, позволяющих свести на нет отрицательный эффект такого несоответствия, включая использование промежуточной кэш-памяти, расширение пропускной способности магистрали между процессором и памятью, применение элементов памяти с более сложной логической организацией.

Изложение материала начнем с краткого экскурса в историю развития вычислительной техники. Помимо познавательного интереса имеется еще и практический интерес к истории. Мы попытаемся, рассматривая процесс эволюции компьютерных систем, проследить за тем, как по мере совершенствования элементной базы менялись взгляды на структурную организацию и архитектуру ЭВМ.

Первые ЭВМ появились немногим более 50 лет назад. В соответствии с элементной базой и уровнем развития программных средств выделяют четыре поколения ЭВМ, краткая характеристика которых приведена в таблице:

Элементная база (для УУ, АЛУ)

Электронные (или электрические) лампы

Большие интегральные схемы (БИС)

Основные устройства ввода

Пульт, перфокарточный, перфоленточный ввод

Добавился алфавитно-цифровой дисплей, клавиатура

Алфавитно-цифровой дисплей, клавиатура

Цветной графический дисплей, сканер, клавиатура

Основные устройства вывода

Алфавитно-цифровое печатающее устройство (АЦПУ), перфоленточный вывод

Магнитные ленты, барабаны, перфоленты, перфокарты

Добавился магнитный диск

Перфоленты, магнитный диск

Магнитные и оптические диски

Ключевые решения в ПО

Универсальные языки программирования, трансляторы

Пакетные операционные системы, оптимизирующие трансляторы

Интерактивные операционные системы, структурированные языки программирования

Дружественность ПО, сетевые операционные системы

Персональная работа и сетевая обработка данных

Цель использования ЭВМ

Технические и экономические расчеты

Управление и экономические расчеты

Телекоммуникации, информационное обслуживание

ЭВМ первого поколения обладали небольшим быстродействием в несколько десятков тыс. оп./сек. Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение.

Языков программирования как таковых еще не было, и для кодирования своих алгоритмов программисты использовали машинные команды или ассемблеры. Это усложняло и затягивало процесс программирования. К концу 50-х годов средства программирования претерпевают принципиальные изменения: осуществляется переход к автоматизации программирования с помощью универсальных языков и библиотек стандартных программ.

Второе поколение ЭВМ – это переход к транзисторной элементной базе, появление первых мини-ЭВМ. Один транзистор уже способен трудиться за 40 электронных ламп и при этом работать с большей скоростью, выделять очень мало тепла и почти не потреблять электроэнергию. Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации. Увеличился объем памяти, а магнитную ленту начали использовать как для ввода, так и для вывода информации. В середине 60-х годов получило распространение хранение информации на дисках.

Получает дальнейшее развитие принцип автономии – он реализуется уже на уровне отдельных устройств, что выражается в их модульной структуре. Устройства ввода-вывода снабжаются собственными устройствами управления (УУ) (называемыми контроллерами), что позволило освободить центральное УУ от управления операциями ввода-вывода. В ЭВМ 2-го поколения добавился алфавитно-цифровой дисплей, появилась клавиатура.

Принципиальным изменением в структуре ЭВМ стало добавление аппаратного блока обработки чисел в формате с плавающей запятой.

ЭВМ этого поколения создавались на основе принципа унификации, что позволило использовать вычислительные комплексы в различных сферах деятельности.

Расширение функциональных возможностей ЭВМ увеличило сферу их применения, что вызвало рост объема обрабатываемой информации и поставило задачу хранения данных в специальных базах данных и их ведения. Так появились первые системы управления базами данных – СУБД.

Изменились формы использования ЭВМ: введение удаленных терминалов (дисплеев) позволило широко и эффективно внедрить режим разделения времени и за счет этого приблизить ЭВМ к пользователю и расширить круг решаемых задач.

В конце 70-х годов развитие микроэлектроники привело к созданию возможности размещать на одном кристалле тысячи интегральных схем. Так появились большие интегральные схемы и 4-е поколение ЭВМ, для которого характерны создание серий недорогих микро-ЭВМ, разработка супер-ЭВМ для высокопроизводительных вычислений.

Наиболее значительным стало появление персональных ЭВМ, что позволило приблизить ЭВМ к своему конечному пользователю. Компьютеры стали широко использоваться неспециалистами, что потребовало разработки «дружественного» программного обеспечения. Возникают операционные системы, поддерживающие графический интерфейс, интеллектуальные пакеты прикладных программ. В связи с возросшим спросом на ПО совершенствуются технологии его разработки – появляются развитые системы программирования, инструментальные среды пользователя.

В середине 80-х стали бурно развиваться сети персональных компьютеров, работающие под управлением сетевых или распределенных ОС.

ЭВМ пятого поколения

Они будут основаны на принципиально новой элементной базе. Основным их качеством должен быть высокий интеллектуальный уровень, в частности, распознавание речи, образов. Это требует перехода от традиционной фон-неймановской архитектуры компьютера к архитектурам, учитывающим требования задач создания искусственного интеллекта.

Таким образом, для компьютерной грамотности необходимо понимать, что на данный момент создано четыре поколения ЭВМ:

Пятое поколение ЭВМ строится по принципу человеческого мозга, управляется голосом. Соответственно, предполагается применение принципиально новых технологий. Огромные усилия были предприняты Японией в разработке компьютера 5-го поколения с искусственным интеллектом, но успеха они пока не добились.

Фирма IBM тоже не намерена сдавать свои позиции мирового лидера, например, Японии. Мировая гонка за создание компьютера пятого поколения началась еще в 1981 году. С тех пор еще никто не достиг финиша. Поживем – увидим.

Основные области применения эвм различных классов

В соответствии с Законом Мура основные характеристики компьютеров улучшаются приблизительно в 2 раза каждые 2 года. В этих условиях любая предложенная классификация ЭВМ очень быстро устаревает и нуждается в корректировке. Например, в классификациях десятилетней давности широко использовались названия мини-, миди- и микроЭВМ, которые почти исчезли из обихода.

Существуют три глобальные сферы деятельности человека, которые требуют использования качественно различных типов ЭВМ:

1. Применение ЭВМ для автоматизации вычислений. Научно-техническая революция во всех областях науки и техники постоянно выдвигает новые научные, инженерные, экономические задачи, которые требуют проведения крупномасштабных вычислений (задачи проектирования новых образцов техники, моделирования сложных процессов, атомная и космическая техника и др.). Отличительной особенностью этого направления является наличие хорошей математической основы, заложенной развитием математических наук и их приложений. Первые, а затем и последующие вычислительные машины классической структуры в первую очередь и создавались для автоматизации вычислений.

Одновременно со структурными изменениями ЭВМ происходило и качественное изменение характера вычислений. Доля чисто математических расчетов постоянно сокращалась, и в настоящее время она составляет около 10% от всех вычислительных работ. Машины все больше стали использоваться для новых видов обработки: текстов, графики, звука и др.

2. Применение ЭВМ в системах управления. Это направление родилось примерно в 60-е годы, когда ЭВМ стали интенсивно внедряться в контуры управления автоматических и автоматизированных систем. Новое применение вычислительных машин потребовало видоизменения их структуры. ЭВМ, используемые в управлении, должны были не только обеспечивать вычисления, но и автоматизировать сбор данных и распределение результатов обработки. Сопряжение с каналами связи потребовало усложнения режимов работы ЭВМ, сделало их многопрограммными и многопользовательскими.

3. Применение ЭВМ для решения задач искусственного интеллекта. Напомним, что задачи искусственного интеллекта предполагают получение не точного результата, а чаще всего осредненного в статистическом, вероятностном смысле. Примеров подобных задач много: задачи робототехники, доказательства теорем, машинного перевода текстов, планирования с учетом неполной информации, составления прогнозов, моделирования сложных процессов и явлений и т.д. Это направление все больше набирает силу. Во многих областях науки и техники создаются и совершенствуются базы данных и базы знаний, экспертные системы. Для технического обеспечения этого направления нужны качественно новые структуры ЭВМ с большим количеством вычислителей (ЭВМ или процессорных элементов), обеспечивающих параллелизм в вычислениях. По существу, ЭВМ уступают место сложнейшим вычислительным системам.

Уже это небольшое перечисление областей применения ЭВМ показывает, что для решения различных задач нужна соответственно и различная вычислительная техника. Поэтому рынок компьютеров постоянно имеет широкую градацию классов и моделей ЭВМ.

Классификация вычислительных систем

С развитием науки и техники постоянно выдвигаются новые крупномасштабные задачи, требующие выполнения больших объемов вычислений. Особенно эффективно применение суперЭВМ при решении задач проектирования, в которых натурные эксперименты оказываются дорогостоящими, недоступными или практически неосуществимыми. В этом случае ЭВМ позволяет методами численного моделирования получить результаты вычислительных экспериментов, обеспечивая приемлемое время и точность решения, т.е. решающим условием необходимости разработки и применения подобных ЭВМ является экономический показатель “производительность/стоимость”. Дальнейшее развитие суперЭВМ связывается с использованием направления массового параллелизма, при котором одновременно могут работать сотни и даже тысячи процессоров.

Большие эвм (mainframe)

Данные ЭВМ представляют собой многопользовательские машины с центральной обработкой, с большими возможностями для работы с базами данных, с различными формами удаленного доступа. Казалось, что с появлением быстропрогрессирующих персональных ЭВМ большие ЭВМ обречены на вымирание. Однако, они продолжают развиваться и выпуск их снова стал увеличиваться, хотя их доля в общем парке постоянно снижается. По оценкам IBМ, около половины всего объема данных в информационных системах мира должно храниться именно на больших машинах. Новое их поколение предназначено для использования в сетях в качестве крупных серверов. Большими ЭВМ комплектуются ведомственные, территориальные и региональные вычислительные центры. В России основными потребителями являются государственные организации и крупные компании федерального уровня, такие, как РЖД (система резервирования мест и продажи билетов) или АвтоВАЗ. В свое время мейнфреймы были единственной вычислительной платформой, способной обслуживать предприятия такого масштаба, и эта платформа активно развивалась. За рубежом мейнфрейм считается классическим решением для определенного круга задач, например, в финансовой сфере.

Средние ЭВМ используются для управления сложными технологическими производственными процессами, ЭВМ этого типа могут использоваться и для управления распределенной обработкой информации в качестве сетевых серверов, рабочих станций для работы с графикой. Существуют специальные ЭВМ, предназначенные в первую очередь для работы в финансовых структурах. В этих машинах особое внимание уделяется сохранности и безопасности данных.

Персональные и профессиональные ЭВМ, позволяют удовлетворять индивидуальные потребности пользователей. На базе этого класса ЭВМ также строятся автоматизированные рабочие места (АРМ) для специалистов различного уровня.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *