Ферритная фаза в аустенитных сталях что это
Феррит (фаза)
Феррит (твердый раствор внедрения C в α-железе с объемно-центрированной кубической решеткой)
Аустенит (твердый раствор внедрения C в γ-железе с гранецентрированной кубической решеткой)
Цементит (карбид железа; Fe3C метастабильная высокоуглеродистая фаза)
Графит стабильная высокоуглеродистая фаза
Ледебурит (эвтектическая смесь кристаллов цементита и аустенита, превращающегося при охлаждении в перлит)
Мартенсит (сильно пересыщенный твердый раствор углерода в α-железе с объемно-центрированной терагональной решеткой)
Перлит (эвтектоидная смесь, состоящая из тонких чередующихся пластинок феррита и цементита)
Сорбит (дисперсный перлит)
Троостит (высокодисперсный перлит)
Бейнит (устар: игольчатый троостит) — ультрадисперсная смесь кристаллов низкоуглеродистого мартенсита и карбидов железа
Белый чугун (хрупкий, содержит ледебурит и не содержит графит)
Серый чугун (графит в форме пластин)
Ковкий чугун (графит в хлопьях)
Высокопрочный чугун (графит в форме сфероидов)
Половинчатый чугун (содержит и графит, и ледебурит)
Феррит (лат. ferrum — железо), фазовая составляющая сплавов железа, представляющая собой твёрдый раствор углерода и легирующих элементов в α-железе (α-феррит). Имеет объемноцентированную кубическую кристаллическую решётку. Является фазовой составляющей других структур, например, перлита, состоящего из феррита и цементита.
При температурах выше 1401 °С в железоуглеродистых сплавах образуется твёрдый раствор углерода в δ-железе (δ-феррит), который можно рассматривать как высокотемпературный феррит.
Содержание
Свойства
Растворимость углерода в α-феррите 0,02–0,03 % (по массе) при 723 °C, а при комнатной температуре 10 −6 –10 −7 %; в δ-феррите — 0,1 %. Растворимость легирующих элементов может быть весьма значительной или неограниченной. Легирование феррита в большинстве случаев приводит к его упрочнению. Нелегированный феррит относительно мягок, пластичен, сильно ферромагнитен до 768–770 °С.
Строение
Микростроение, размеры зерна и субструктура феррита зависят от условий его образования при полиморфном γ—α превращении. При небольшом переохлаждении образуются приблизительно равноосные, полиэдрические зёрна; при больших переохлаждениях и наличии легирующих элементов (Cr, Mn, Ni) феррит возникает по мартенситному механизму и вследствие этого упрочняется. Укрупнение зёрен аустенита часто приводит к образованию при охлаждении видманштеттова феррита, особенно в литых и перегретых сталях. Выделение доэвтектоидного феррита происходит преимущественно на границах аустенитных зёрен.
Источники
См. также
Полезное
Смотреть что такое «Феррит (фаза)» в других словарях:
Феррит (в железе) — Феррит (фаза) Фазы железоуглеродистых сплавов Феррит (твердый раствор внедрения C в α железе с объемно центрированной кубической решеткой) Аустенит (твердый раствор внедрения C в γ железе с гранецентрированной кубической решеткой) Цементит… … Википедия
Феррит (железо) — Феррит (фаза) Фазы железоуглеродистых сплавов Феррит (твердый раствор внедрения C в α железе с объемно центрированной кубической решеткой) Аустенит (твердый раствор внедрения C в γ железе с гранецентрированной кубической решеткой) Цементит… … Википедия
Феррит — Феррит: Ферриты (оксиферы) химические соединения оксида железа Fe2O3 с оксидами других металлов. Феррит (фаза) железо или сплав железа с объёмноцентрированной кубической кристаллической решёткой. См. также Ферритовый фильтр … … Википедия
Феррит (металлургия) — У этого термина существуют и другие значения, см. Феррит. Феррит (металлургия) Фазы железоуглеродистых сплавов Феррит (твердый раствор внедрения C в α железе с объемно центрированной кубической решеткой) Аустенит (твердый раствор внедрения C в γ… … Википедия
ФЕРРИТ — твердый раствор углерода (обычно низкой концентрации порядка сотых долей процента) и других элементов в α железе α Fe (C) (почти чистое железо α). Содержание углерода менее 0,04 %. Кристаллическая решетка феррита аналогична… … Металлургический словарь
Феррит — [ferrite] твёрдый раствор С (до 0,025 % при 723 °С) и легирующих элементов в α Fe с ОЦК решеткой. Феррит одна из основных фаз в сталях и чугунах. С и N растворяются в α Fe внедрения, а Р, Si и все металлы замещаются. В легированных сталях и… … Энциклопедический словарь по металлургии
ФЕРРИТ — (от лат. ferrum железо) фаза железоуглеродистых сплавов, твёрдый р р углерода (до 0,02%) в а железе. Ф. имеет кубическую объёмно центриров. решётку. В Ф. могут быть растворены кремний, марганец, фосфор и др. элементы. При темп ре 911 769 °С Ф.… … Большой энциклопедический политехнический словарь
ферритная фаза (дельта-феррит, феррит) — 3.1 ферритная фаза (дельта феррит, феррит): Мелкодисперсная фаза, возникающая при кристаллизации из жидкого состояния хромоникелевых сталей аустенитного и аустенитно ферритного класса, имеет объемно центрированную кубическую кристаллическую… … Словарь-справочник терминов нормативно-технической документации
Ферит (в железе) — Феррит (фаза) Фазы железоуглеродистых сплавов Феррит (твердый раствор внедрения C в α железе с объемно центрированной кубической решеткой) Аустенит (твердый раствор внедрения C в γ железе с гранецентрированной кубической решеткой) Цементит… … Википедия
Ферит — Феррит (фаза) Фазы железоуглеродистых сплавов Феррит (твердый раствор внедрения C в α железе с объемно центрированной кубической решеткой) Аустенит (твердый раствор внедрения C в γ железе с гранецентрированной кубической решеткой) Цементит… … Википедия
Ферритная фаза в аустенитных сталях что это
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
Методы определения содержания ферритной фазы в прутках
Austenitic steel bars.
Methods for the determination of the ferrite-phase
Дата введения 1967-07-01
1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР
РАЗРАБОТЧИКИ И.Н. Голиков, И.А. Павперова, Г.К. Семина, Г.П. Казакова, А.В. Горжевская
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ ПОСТАНОВЛЕНИЕМ Комитета стандартов, мер и измерительных приборов при Совете Министров СССР от 15.03.66
4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначение НТД, на который дана ссылка
Номер пункта, подпункта, перечисления, приложения
5. Ограничение срока действия снято по решению Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 2-93)
6. ПЕРЕИЗДАНИЕ (август 1995 г.) с Изменениями N 1, 2, утвержденными в октябре 1974 г., декабре 1987 г. (ИУС 10-74, 3-88)
Настоящий стандарт распространяется на аустенитные нержавеющие стали марок 17Х18Н9, 12Х18Н9, 12Х18Н9Т, 04Х18Н10Т, 12Х18Н10Т, 08Х18Н10, 04Х18Н10, 02Х18Н10, 06Х18Н11, 12Х18Н12Т, 08Х18Н12Т и 08Х18Н12Б и устанавливает металлографический и магнитный методы определения содержания ферритной фазы (СФФ).
Контролю на содержание СФФ подвергают кованые и катаные прутки диаметром или толщиной от 80 до 270 мм.
По согласованию сторон указанные методы определения СФФ могут быть распространены и на стали аустенитного класса других марок.
Выбор метода и его применение необходимо предусматривать в стандартах и технических условиях на металлопродукцию, устанавливающих технические требования на нее.
(Измененная редакция, Изм. N 1, 2).
1. ОТБОР ОБРАЗЦОВ И ВЫРЕЗКА ШЛИФОВ
1.1. Число образцов для определения содержания СФФ в плавке стали устанавливают стандартами и техническими условиями на продукцию; их должно быть не менее двух.
1.2. Образцы отбирают от любых прутков контролируемой плавки в произвольных местах:
б) при контроле на большем числе шлифов образцы должны быть отобраны не менее чем от трех прутков.
Место отбора образцов от штанг, соответствующих определенному месту по высоте слитка, может быть установлено по соглашению сторон.
1.3. При металлографическом методе определения СФФ образцы для изготовления шлифов вырезают из круглого или квадратного профиля диаметром или толщиной от 80 до 270 мм от центра до середины радиуса или четверти толщины (см. чертеж).
1.4. Длину образца в направлении оси прутка устанавливают не менее 10-12 мм. Припуск на шлифование должен быть больше или равен 0,5 мм (см. чертеж).
1.5. Исключен, Изм. N 2.
1.6. Образцы следует вырезать холодным механическим способом. Допускается автогенная резка при условии, что шлиф будет изготовлен от места реза на расстоянии не менее 25 мм.
1.7. Определение содержания СФФ металлографическим и магнитным методами проводят на образцах в состоянии поставки.
2. ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ФЕРРИТНОЙ ФАЗЫ МЕТАЛЛОГРАФИЧЕСКИМ МЕТОДОМ
2.1. На образцах, вырезанных вдоль волокна, изготовляют шлифы по плоскости, проходящей от центра до середины радиуса прутка (см. чертеж).
2.2. Микрошлиф подвергают электролитическому или химическому травлению. Электролитическое травление осуществляют в 10 %-ном водном растворе щавелевой кислоты при комнатной температуре и плотности тока 0,03-0,08 а/см в течение 20-40 с.
Химическое травление осуществляют в реактиве следующего состава: 20 мл воды, 20 мл концентрированной соляной кислоты и 4 г медного купороса. Травление проводят при комнатной температуре в течение 8-10 с.
Допускается травление в реактивах другого состава, обеспечивающих быстрое и качественное травление (участки не должны быть окисленными, а их границы должны быть тонкими и резкими).
2.3. Содержание СФФ в стали оценивают просмотром всей площади травленого микрошлифа.
2.4. На каждом шлифе при увеличении 280-320 и диаметре поля зрения микроскопа 0,38-0,43 мм определяют место с наибольшим содержанием СФФ, которое визуально оценивают в баллах или в процентах путем сравнения с фотоэталонами прилагаемой шкалы.
Шкала представлена двумя рядами фотоэталонов, различающимися по величине и количеству участков (см. вкладки).
2.4, 2.5 (Измененная редакция, Изм. N 2).
2.6. (Исключен, Изм. N 2).
2.7. Содержание СФФ в плавке оценивают двумя способами:
а) по максимальному баллу или проценту из оценок двух образцов;
б) по среднему баллу или проценту из оценок двух или более образцов.
Способ оценки устанавливается стандартами и техническими условиями на продукцию.
2.8. Норма содержания СФФ в зависимости от назначения стали устанавливается стандартами и техническими условиями на продукцию.
3. ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ФЕРРИТНОЙ ФАЗЫ МАГНИТНЫМ МЕТОДОМ
3.1. Для магнитного метода определения СФФ образцы отрезают от прутков в виде поперечных темплетов высотой не менее 10 мм.
3.2. Определения проводят на шлифованной поверхности макрошлифов, изготовленных на образцах. Допускается определение проводить на макрошлифах, применяемых для контроля макроструктуры до травления.
3.3. Основным магнитным методом высшей точности является метод магнитного насыщения.
3.4. Рабочими средствами измерения являются ферритометры по ГОСТ 26364-90 при измерении содержания ферритной фазы в пределах 0-20 %. При измерении СФФ более 20% допускается применение других приборов при наличии соответствующей градуировки.
3.5. Градуировка рабочих средств измерения должна осуществляться по стандартным образцам СФФ, аттестованным методом магнитного насыщения или металлографическим методом.
3.6. Для определения СФФ на макрошлифе проводят не менее 40 измерений равномерно расположенных по двум-трем диаметрам (диагоналям). При установлении на макрошлифе зоны с наибольшим СФФ проводят меньшее число измерений, но не менее 20.
3.7. СФФ на макрошлифе определяют средним из трех максимальных показаний прибора в разных местах шлифа с последующим его выражением по градуировочной кривой в баллах или процентах.
3.8. СФФ в плавке оценивают двумя способами:
а) по максимальному показанию из оценок двух образцов;
б) по среднему показанию из оценок двух или более образцов.
Способ оценки устанавливается стандартами или техническими условиями на продукцию.
Разд. 3 (Измененная редакция, Изм. N 2)
4. ПОВЕРКА ПРИБОРОВ
4.1. Перед началом работы новый прибор градуируется.
4.1а. Методику первичной и периодических поверок ферритометров (по ГОСТ 26364-90) устанавливают в соответствии с ГОСТ 8.518-84.
(Введен дополнительно, Изм. N 2).
4.3. Эталоны необходимо изготовлять из прутков контролируемой марки стали.
Допускается изготовление эталонов для стали марок 17Х18Н9, 12Х18Н9, 12Х18Н9Т, 04Х18Н10Т, 08Х18Н10, 04Х18Н10, 02Х18Н10, 06Х18Н11, 12Х18Н12Т, 08Х18Н12Т, 08Х18Н12Б, из стали марки 12Х18Н10Т.
(Измененная редакция, Изм. N 1).
4.4. В качестве эталонов используют микрошлифы, вырезанные и изготовленные в соответствии с пп. 1.3 и 2.1. Одну из сторон микрошлифа, расположенную поперек оси прутка, приготовляют как макрошлиф в соответствии с п. 3.2.
4.5. Содержание СФФ в эталонах металлографическим методом определяют путем балльной оценки по методике, изложенной в разд. 2.
4.6. Содержание СФФ в эталонах магнитным методом определяют в соответствии с методикой, изложенной в разд. 3.
4.8. Правильность работы прибора в течение эксплуатации и после ремонта проверяют периодически по двум-трем эталонным образцам с заранее фиксированными показаниями, соответствующими разным участкам градуировочной кривой прибора.
Аустенитно-ферритные стали
Дуплексные стали находят зa рубежом широкое применение в качествe конструкционного материала для теплообменногo оборудования. Для этих конструкций хромоникелевые аустенитные стали малопригoдны вследствиe склонности к хлоридному коррозионнoму растрескиванию. Дуплексные стали обладают такжe преимушествами перeд сплавами на основе меди, которыe склонны к щелевой коррозии и к образованию питтингов.
Другие страницы по теме
Аустенитно-ферритные стали
Формирование дуплексной структуpы способствуeт значительнoму повышению прочности пo сравнению сo сталями с простой аустенитной структурой, обеспечивaя при этом такиe важные свойства, кaк стойкость против питтингообразования и щелевой коррозии, коррозионного растрескивания.
Среди легирующих элементов, определяющиx стойкость сталей к питтингообразовaнию и щелевой коррозии, вaжнeйшими являютcя хром, молибден, вольфрам, азот. Выбор марки стали зaвисит oт условий среды (температура, содержание кислорода и хлора, рН, скорость потока). Для oценки потенциальной стойкости стали прoтив локальных видов коррозии используют так называумый эквивалент питтингообразования:
PRE = 1•% Сг+ 3,3•% (Мо + 0,5 W) + l6•% N.
Известные марки аустенитно-ферритных сталей и их составы приведены в табл. 10.51. Стойкость к питтингообразованию проверяется различными методами, моделирующими окислительный характер хлорсодержащих рабочих сред и охлаждающей воды. Наиболее часто применяется метод ASTM G 48, соответствующий испытаниям по ГОСТ 9.912-89, в 6%-ном растворе хлорного железа. При испытаниях определяется температура, при которой образуются питтинги с потерей массы образца, равной 1,0 г/м 2 /24 ч. В табл. 1 приведены сведения о коррозионной стойкости дуплексных сталей.
Благодаря мелкозернистой структуре, представляю щей собой смесь феррита и аустенита, по прочности дуплексные стали значительно превосходят широко применяемые в настоящее время хромоникелевые аустенитные стали при удовлетворительной пластичности и ударной вязкости (табл. 2).
Свойства сварных соединений зависят от химического состава сталей и технологии сварки (табл. 4), главным образом от погонной энергии при сварке. Для сварки рекомендуются сварочные материалы, обеспечивающие получение ферритно-аустенитной или аустенитной структуры металла шва.
Марка стали | σ0,2,МПа | σв, МПа | δ, % | Ударная вязкость, Дж/см 2 |
03Х23Н6 | 350 | 580 | 20 | 60 |
03Х22Н6М2 | ||||
08Х22Н6Т | 550 | 18 | ||
12Х21Н5Т | 380 | 600 | 50 | |
08Х21Н6М2Т | 350 | 20 | 60 | |
08Х18Г8Н2Т | 660 | |||
03Х24Н6АМ3 | 390 | 690 | 25 | |
DMV 18.5 | 350 | 600 | ||
DMV 22.5 | 450 | 700 | 100 | |
SAF 2304 | 400 | 600 | 120 | |
SAF 2205 | 450 | 680 | ||
SAF 2507 | 550 | 800 | 100 | |
DMV 25.7N | 530 | 730 | ||
SAF 2906 | 650 | 800 |
В Росcии аустенитно-ферритные стали применяются в основном в качествe заменителeй хромоникелевых аустенитных сталей. В cвязи с этим для сварки сталей-заменителeй используют аустенитные присадочные материалы. Зaрубежные маpки дуплексных сталей сваривают, кaк правило, c применением сварочных материалов c химическим составом, близким к основнoму металлу.
Во избежание необходимости послесварочной термической обработки для сварки дуплексных сталей рекомендуются низкоэнергетические источники. Тепловложения при сварке не должны превышать 2,5 кДж/мм. При этом температура изделия в процессе сварки не должна быть >150. 250 о С.
При высоких температурах структура основного и сварочного металла состоит на 100 % из феррита. В процессе охлаждения от высоких температур часть феррита трансформируется в аустенит. Для формирования оптимальных механических свойств необходимо избегать резкого охлаждения сварных соединений.
Оптимальный режим сварки можно рассчитать, используя зависимость тепловложения от сварочных параметров:
При ограничении значения Q до 2,5 кДж/мм, напряжения дуги 15В и скорости сварки 60 мм/мин величина сварочного тока в процессе АрДС не должна превышать 160А. При сварке весьма тонкого металла, например при производстве тонкостенных сварных труб из дуплексных сталей, невозможно избежать 100%-ной ферритной структуры в металле шва и в ЗТВ. Поэтому после сварки сварные трубы подвергают термической обработке путем нагрева до 1050. 1100 о C с последующим быстрым охлаждением. В указанном интервале температур
50 % феррита превращается в аустенит, что обеспечивает высокую пластичность сварным соединениям.
Основы дуговой сварки
Что такое содержание ферритной фазы в нержавеющих аустенитных сварочных металлах и как оно измеряется?
В вопросе качества нержавеющих аустенитных сварочных материалов важным показателем является их содержание ферритной фазы. Феррит весьма эффективен для предотвращения горячих трещин в нержавеющих аустенитных сварочных металлах. Однако феррит может также вызывать охрупчивание (охрупчивание а-фазой) сварочного металла при высоких температурах, а также снижать его ударную вязкость при криогенных температурах. Поэтому контроль содержания ферритной фазы очень важен при разработке химических формул сварочных материалов. Обычно сварочные материалы из аустенита марок E308 и E308L разработаны таким образом, что содержание феррита в них составляет примерно от 3 до 10%, что позволяет предотвращать появление горячих трещин и минимизировать охрупчивание при высоких температурах.
На Рис. 1 показана типичная микроструктура наплавленного металла марки E308: темные участки – феррит, а светлые – аустенит.
Рис. 1 — Типичная микроструктура наплавленного металла марки E308: темные участки – феррит, а светлые – аустенит (увеличение 200x)
Феррит и аустенит обладают совершенно разными физическими свойствами. На Рис. 2 представлено сравнение типичных физических свойств феррита и аустенита.
Рис. 2 —Сравнение кубической решетки и магнитных свойств феррита и аустенита
Эта разница магнитных свойств очень важна в вопросе содержания ферритной фазы аустенитного сварочного металла, так как магнитные методы (помимо химических и металлографических) часто используются для измерениия содержания ферритной фазы. Ферритометр (Рис. 3) – прибор, часто применяемый для локального измерения содержания ферритной фазы в металле сварных швов магнитным методом.
Рис. 3 —Ферритометр – наиболее широко применяемый прибор для измерения локального содержания ферритной фазы в сварочном металле, так как его контактный датчик достаточно мал, чтобы его можно было использовать на небольшом участке сварочного металла.
Ферритная фаза
В процессе остывания сталей они проходят этап (фазу) кристаллизации. Ферритная фаза определяет количество мелкодисперсионного дельта феррита. Например, в аустенитных марках типа Е308 или Е308L процент содержания этого элемента колеблется от трёх до десяти процентов.Это количество позволяет предотвратить появление трещин и не допустить так называемое «охрупчивание» металла при высоких температурах.
Строение и свойства
При повышении температуры аустенитные стали превращаются в жидкий раствор с определённым процентным отношением железа и углерода. Если температура раствора превышает линию так называемого ликвидуса (это около 1700 °C),образовавшийся расплав становится статически неустойчивым. Его состояние оценивают по двум составляющим:фазовой и структурной.
Для первой составляющей основным показателем является фаза состояния полученной смеси. Она определяет состояние металла по следующим показателям:
Структурная составляющая часть образца определяется как гомогенная или квазигомогенная форма. Общая структура образовавшегося феррита составляет равноосные кристаллы. В трёхмерном пространстве решётка ферритной фазы представляет объёмно-центрированный куба. Эти кристаллы определяют твёрдость феррита и способность углерода в нём растворяться. Опыт показывает, что при температуре равной 727 градусов в феррите растворяется только 0,02% углерода.
Кроме этого к основным свойствам феррита относятся:
К основным недостаткам относятся невысокая прочность и недостаточная твёрдость. Последний показатель зависит от величины образованного зерна и находится в интервале от 65 до 130 НВ.
В зависимости от этапа проходящих превращений ферритная фаза находится в следующих состояниях:
Каждое состояние требует точного определения и выявления возникающих преобразований. От них во многом зависят характеристики конечного продукта.Полное отсутствие ферритного образования или незначительное его содержание проявляется с образованием горячих трещин. Завышенное содержание этого показателя снижает пластичность, ударную вязкость и антикоррозийную стойкость.
Контроль ферритной фазы
Особенность влияния ферритной фазы на образец проявляется при небольших изменениях содержания этого показателя (несколько процентов). Могут существенным образом измениться конечные свойства изготовленной стали. Поэтому практически все образцы подвергаются проверке.
Этот процесс регламентируется ГОСТ Р 53686-2009. В нём приведен порядок, как должен осуществляться контроль содержания ферритной фазы.На основании этого стандарта должна проходить проверка, которая должна определить следующие показатели:
ГОСТ Р 53686-2009 Определение содержания ферритной фазы в металле сварного шва аустенитных и двухфазных феррито-аустенитных хромоникелевых коррозионностойких сталей
Определение содержания ферритной фазы указывает на её объёмную долю в сталях аустенитного или аустенитно-ферритного класса.
Особенно подробное испытание проводится для сталей в которых в дальнейшем будет применяться сварка. Полученный сварной шов проверяется на прочность и долговечность путём проверки ферритной фазы. Она не должна превышать шести процентов.Пониженный процент ферритной фазы ухудшает механические характеристики.
Для проведения контроля ферритной фазы используют специально отобранные образцы. Они проверяются на специальных приборах определяющих силу отрыва контрольного магнита от готового сварного соединения. На основе нескольких измерений с использованием калибровочной кривой рассчитывают ферритовое число.