Флотация что это в химии
23. Флотация
Флотация (от фр. flottation, flotter – «плавать») – это процесс разделения мелких твердых частиц (главным образом минералов), основанный на их различной смачиваемости водой. Гидрофобные (плохо смачиваемые водой) частицы избирательно закрепляются на границе раздела фаз (обычно газа и воды) и отделяются от гидрофильных (хорошо смачиваемых водой) частиц. При этом пузырьки газа или капли масла прилипают к плохо смачиваемым водой частицам и поднимают их к поверхности. Проекция сил поверхностного натяжения, приложенных к частице по периметру смачивания, на направление, по которому действует сила, отрывающая частицу от поверхности раздела «газ – жидкость», называется флотационной силой. Если отрывающей силой является сила тяжести, то флотационной силой будет вертикальная составляющая сил, приложенных по периметру смачивания.
Поскольку флотационная сила пропорциональна периметру смачивания или диаметру частицы, а сила тяжести – объему частицы или диаметру в третьей степени, то при уменьшении размера частицы флотационная сила будет уменьшаться медленнее, чем сила тяжести. Например, при уменьшении диаметра частиц в 10 раз флотационная сила уменьшится в 10 раз, а сила тяжести – в 1000 раз. Поэтому, если удельная флотационная сила (т. е. сила, действующая на единицу длины периметра) не равна нулю, то всегда можно выбрать частицу столь малых размеров, для которой флотационная сила будет больше силы тяжести.
Флотация – один из основных методов обогащения полезных ископаемых, применяется также для очистки воды от органических веществ и твердых взвесей, разделения смесей, ускорения отстаивания в химической, нефтеперерабатывающей, пищевой и иных отраслях промышленности. В зависимости от характера и способа образования межфазных границ («вода – масло – газ»), на которых происходит закрепление разделяемых компонентов, различают несколько видов флотации. Различают три основных вида флотации – пленочную, масляную и пенную.
При пленочной флотации разделение минералов происходит на плоской поверхности раздела фаз «вода – воздух». Несмачиваемые частицы остаются на поверхности и выделяются во флотационный продукт, смачиваемые частицы переходят в водную фазу. Из-за низкой производительности этот процесс не получил широкого применения.
Масляная флотация заключается в избирательном смачивании частиц минерала диспергированным в воде жидким маслом. Образующиеся при этом агрегаты частиц, заключенные в масляные оболочки, всплывают на поверхность пульпы. Вследствие незначительной подъемной силы капли масла могут нести лишь небольшой груз частиц, а расход масла при этом велик. Поэтому масляная флотация не получила промышленного распространения.
При пенной флотации пульпа насыщается пузырьками газа, обычно воздуха. Флотирующиеся (гидрофобные) частицы закрепляются на пузырьках и выносятся ими на поверхности пульпы, образуя слой минерализованной пены. Гидрофильные частицы остаются в пульпе. В зависимости от способа насыщения пульпы пузырьками газа пенная флотация подразделяется на обычную пенную флотацию, вакуум-флотацию, химическую флотацию, флотацию кипячением. При обычной пенной флотации в качестве газа используется воздух, причем аэрация пульпы обеспечивается или засасыванием воздуха из атмосферы и диспергированием его в пульпе, или же вдуванием в пульпу сжатого воздуха. Аэрация пульпы при вакуум-флотации осуществляется за счет выделения воздуха из раствора, т. к. находящаяся под атмосферным давлением вода содержит некоторое количество растворенного воздуха.
При химической (или газовой) флотации пузырьки газа образуются в результате химического взаимодействия.
При флотации кипячением процесс идет за счет образующихся пузырьков пара и пузырьков выделяющегося растворенного газа.
Данный текст является ознакомительным фрагментом.
ФЛОТАЦИЯ
Посредством флотации можно разделять также водорастворимые соли, взвешенные в их насыщенных р-рах [напр., отделять сильвин (KCl) от галита (NaCl)]. Благодаря флотации в пром. произ-во вовлекаются м-ния тонковкрапленных руд и обеспечивается комплексное использование полезных ископаемых. Флотацию применяют также для очистки воды от орг. в-в (нефти, масел и др.), тонкодисперсных осадков солей и шламов, для выделения и разделения бактерий и т. д.
Помимо горноперерабатывающих отраслей пром-сти флотацию используют в хим., пищ. и др. отраслях для ускорения отстаивания, выделения твердых взвесей и эмульгир. орг. в-в; для разделения синтетич. орг. ионитов и выделения из пульп ионитов, нагруженных разл. адсорбатами; при переработке бумажных отходов для отделения чистых целлюлозных волокон от испачканных; для очистки натурального каучука от примесей; для извлечения нафталина из воды, охлаждающей коксовый газ; очистки пром. стоков и др.
Разновидности процесса Широкое применение флотации привело к появлению большого числа разновидностей процесса.
Вакуумная флотация. По этому способу, предложенному Ф. Элмором (Великобритания, 1906), жидкость, содержащая твердые частицы, насыщается газом, к-рый при понижении давления выделяется из нее в виде мелких пузырьков на пов-сти гидрофобных частиц.
Ионная флотация разработана в 50-х гг. 20 в. (Ф. Себба, ЮАР) для очистки воды, а также извлечения полезных компонентов из разб. р-ров. Отдельные ионы, молекулы, тонкодисперсные осадки и коллоидные частицы взаимод. с флотореагентами-собирателями, обычно катион-ного типа, и извлекаются пузырьками газа в пену либо пленку на пов-сти р-ра. Способ перспективен для переработки пром. стоков, минерализов. подземных термальных и шахтных вод и морской воды.
Электрофлотация. Для ее проведения используют пов-сть пузырьков водорода и кислорода, выделяющихся при электролитич. разложении воды.
Другие способы флотации. Среди всех способов первой была предложена (1860) масляная флотация (В. Хайнс, Великобритания). Для ее осуществления измельченную руду перемешивают с минеральным маслом и водой; при этом сульфидные минералы селективно смачиваются маслом, всплывают вместе с ним и удаляются с пов-сти воды, а пустые породы (кварц, полевой шпат и др.) осаждаются. В России масляная флотация была применена для обогащения графитовой руды (Мариуполь, 1904). В дальнейшем этот способ усовершенствовали: масло диспергировали до эмульсионного состояния, что позволило извлекать тонкие шламы, напр. марганцевых руд.
В настоящее время масляная, пленочная и нек-рые др. способы флотации практически не применяются.
Собиратели (коллекторы). Роль этих реагентов заключается в селективной гидрофобизации (понижении смачива-емости) пов-сти нек-рых минеральных частиц и возникновении тем самым условий для прилипания к ним газовых пузырьков. Гидрофобизация достигается вытеснением гидрат-ной пленки с пов-сти частиц. Закрепление на ней м. б. обусловлено ван-дер-ваальсовыми силами (физ. адсорбция) либо образованием хим. связи (хемосорбция). По структурным признакам собиратели подразделяют на анионные, кати-онные, амфотерные и неионогенные. Молекулы анионных и катионных реагентов содержат неполярные (углеводородные) и полярные (амино-, карбокси- или др.) группы. Последние обращены к минералу, сорбируются на пов-сти частиц и гидрофобизируют ее, а неполярные группы обращены в воду, отталкивают ее молекулы и предотвращают гидратацию пов-сти частиц.
Катионные собиратели, среди к-рых наиб. распространены алифатич. первичные амины, а также вторичные амины (в керосине), соли четвертичных аммониевых оснований и ами-ноэфиры с короткой разветвленной цепью, используют для флотации калийных солей (гл. обр. KCl при отделении его от NaCl), кварца, силикатов, сульфидов и т. д.
Амфотерные собиратели имеют в своем составе амино- и карбоксильную группы, благодаря чему сохраняют активность как в кислой, так и в щелочной средах. Данные коллекторы особенно эффективны для флотации минералов класса оксидов в воде повышенной жесткости.
Неионогенные собиратели представлены неполярными соед.- углеводородными жидкостями преим. нефтяного происхождения (газойли, дизельные масла, керосин и т. д.), а также жирами и др. В виде водных эмульсий они служат для флотации алмазов, графита, калийных солей, молибденита, самородной S, талька, углей, фосфатов и др. минералов с неполярной пов-стью. Совместное применение полярных коллекторов с неполярными, а также диспергирование, напр. с помощью ультразвука, эмульсий последних (что усиливает адгезионное закрепление их на пов-сти минералов за счет физ. адсорбции) существенно улучшает флотацию крупных частиц; при этом наряду с адгезией флотация сопровождается также и хим. р-циями.
Модификаторы (регуляторы) позволяют сделать возможной, усилить, ослабить или исключить адсорбцию собирателей на минералах. Благодаря регуляторам уменьшается расход собирателей, достигаются разделение минералов с близкой плотностью, обогащение руд сложного состава с получением неск. концентратов. Модификаторы, улучшающие закрепление собирателей на пов-сти определенных минералов и ускоряющие флотацию, наз. активаторами; регуляторы, затрудняющие закрепление коллекторов,- подавителями, или депрессорами.
В большинстве случаев флотореагенты обладают комплексным действием (к-рое зависит от прир. состава пов-сти минералов, рН среды, т-ры пульпы и т.д.) и приведенная их классификация весьма условна.
Избирательность флотации регулируют наряду с иными факторами подбором реагентов, ассортимент к-рых достигает неск. сотен, и их расходом. При увеличении пов-сти флотируемых минералов расход собирателей и активаторов возрастает. Расход пенообразователей немного увеличивается при повышенном содержании обрабатываемого минерала и грубом помоле руды. Расход депрессоров возрастает при повышенной флотируемости подавляемых минералов, высоких концентрациях собирателей в пульпе (напр., при разделении коллективных концентратов), а также при использовании малоизбирательных коллекторов, содержащих в молекулах длинноцепочечные углеводородные радикалы (напр., высшие жирные к-ты и мыла).
Флотируемые компоненты руды извлекаются не полностью при недостатке вспенивателей, а при их избытке ухудшается селективность флотации. Средние расходы флотореагентов невелики и обычно составляют от неск. г до неск. кг на 1 т руды.
Флотационные процессы и оборудование Обогащение руд методом флотации производят на флотационных фабриках, осн. оборудование к-рых включает флотац. машины, контактные чаны и реагентные питатели.
Флотационные машины предназначены для проведения собственно флотации. В них осуществляют перемешивание твердых частиц (суспендирование пульпы) и поддержание их во взвешенном состоянии; аэрацию пульпы и диспергирование в ней воздуха; селективную минерализацию пузырьков путем контакта с обработанными флотореагентами частицами; создание зоны пенного слоя; разделение пульпы и минерализов. пены; удаление и транспортировку продуктов обогащения. Впервые патент на флотац. машину выдан в 1860; первые пром. образцы машин разработаны в 1910-14 (T. Гувер и Д. Кэллоу, США).
Широкое использование флотации для обогащения полезных ископаемых привело к созданию разных конструкций машин. Каждая машина состоит из ряда последовательно расположенных камер с приемными и разгрузочными устройствами для пульпы; каждая камера снабжена аэрирующим и пено-съемным устройствами. Различают одно- и многокамерные флотац. машины. К однокамерным относятся флотационные колонны, в к-рых высота камер превышает их ширину более чем в 3 раза; эти аппараты применяют при флотац. обогащении мономинеральных руд и флотац. отделении шламов.
Многокамерные машины позволяют реализовать сложные схемы обогащения полиминеральных руд с получением неск. концентратов.
По способам аэрации пульпы выделяют мех., пневмомех., пневмогидравлич. и пневматич. машины. В механических машинах взвешивание частиц руды (перемешивание пульпы), засасывание и диспергирование воздуха осуществляется аэратором, или импеллером. В отличие от этих устройств в пневмомеханическиемашины (схему камеры см. на рис.) воздух подается в зону импеллера принудительно с помощью воздуходувки. В пневмогидравлических машинах воздух диспергируется в аэраторах спец. конструкций (напр., в эжекторах) при взаимод. струй жидкости и воздуха. В пневматических машинах воздух диспергируется при продавливании через пористые перегородки.
Работа мех. и пневмомех. машин в значит. степени определяется конструкцией импеллера, вариантом подвода к нему воздуха, особенностями перекачивания импеллером пульпы и ее циркуляции в камере. От способа перекачивания пульпы импеллером зависят особенности аэрации пульпы и гидроди-намич. режим в камере. Последний определяется также размерами зоны интенсивной циркуляции пульпы. По этому признаку различают машины с придонной циркуляцией и циркуляцией во всем объеме камеры.
Характер движения потоков пульповоздушной смеси в камере зависит от конструкций статора машины (имеет вид цилиндров или пластин), устройства для удаления минерализов. пены с пов-сти пульпы (обычно применяют лопастной пеносъемник), успокоителей (предотвращают разрушение пенного слоя), межкамерных перегородок, наличия отбойников и формы камеры (имеет, как правило, скошенные снизу боковые стенки, благодаря чему исключается накапливание в углах твердых частиц и облегчается их перемещение у дна от стенок к импеллеру).
Оптим. степень разделения минералов при изменении характеристики сырья достигается путем изменения кол-ва подаваемого в камеру воздуха, толщины пенного слоя и уровня пульпы, а также производительности импеллера. Средние показатели совр. мех. и пневмомех. машин: производительность по потоку пульпы 0,2-130 м 3 /мин; объем камер от 12-40 м 3 (в России) до 30-100 м 3 (за рубежом). Применение большеобъемных камер позволяет на 20-30% сократить капитальные затраты, металлоемкость машин, а также их энергоемкость (достигает 1,5-3,0 кВт/м 3 ).
По сравнению с мех. и пневмомех. машинами пневмогидравлич. флотац. машины отличаются большей скоростью, небольшими капитальными затратами, высокой производительностью, низкими металло- и энергоемкостью и т. д. Однако из-за отсутствия надежного в работе и долговечного аэрирующего устройства эти флотац. машины еще недостаточно широко применяют в практике обогащения полезных ископаемых.
Известны также мало распространенные пока машины: вакуумные и к о м п r е с с и о н н ы е (аэрация достигается выделением из пульпы растворенных газов); центробежные и со струйным аэрированием; электрофлотационные (аэрация пульпы пузырьками, выделяющимися при электролизе).
Другая аппаратура. Для обработки пульпы флотореагентами предназначены контактные чаны (кондиционеры), в к-рые сначала подаются, как правило, модификаторы, затем собиратели и далее пенообразователи. Время контактирования пульпы с реагентами составляет от неск. секунд до десятков мин. Реагентный режим флотации определяется ассортиментом флотореагентов и порядком их ввода во флотац. процесс. Подача ингредиентов в систему в заданных кол-вах обеспечивается реагентными питателями, или дозаторами реагентов.
Основные процессы и вспомогательные операции
Работа предприятий. Флотац. процессы подразделяют на прямые и обратные. При прямой флотации в пенный продукт, наз. концентратом, извлекают полезный минерал, в камерный продукт, наз. отходами или хвостам и,- частицы пустой породы. Последние извлекают в пенный продукт при обратной флотации.
Различают также основную, перечистную и контрольную флотац. операции. Основная флотация дает т. наз. черновой концентрат, из к-рого в результате перечистной флотации получают готовый концентрат. Камерный продукт основной флотации (несфлотированные частицы) подвергают одной или неск. операциям контрольной флотации с получением отвального продукта (отходов).
Камеры флотац. машин соединяют в такой последовательности, к-рая позволяет осуществлять упомянутые операции, циркуляцию промежуточных продуктов и получать концентраты требуемого качества при заданном извлечении полезного компонента. Показатели флотации особенно для сульфидных руд цветных металлов достигают высокого уровня. Так, из медной руды, содержащей 1,5-1,7% Cu, получают медный концентрат (35% Cu) с извлечением 93% Cu. Из медно-молибденовой руды, содержащей ок. 0,7% Cu и 0,05-0,06 Mo, производят медный концентрат (25% Cu) с извлечением 80% Cu и молибденовый концентрат (св. 50% Mo) с извлечением св. 70% Mo. Из свинцово-цинковой руды, содержащей ок. 1% Pb и 3% Zn, получают свинцовый концентрат с содержанием св. 70% Pb (извлечение св. 90%) и цинковый концентрат с содержанием 59% Zn (извлечение св. 90%) и т. д.
Важное значение для достаточного полного разделения минералов наряду с ионным составом жидкой фазы пульпы, составом растворенных в ней газов (особенно сильно влияние кислорода воздуха), ее т-рой и плотностью, схемой и реагент-ным режимом флотации имеет степень измельчения сырья. Лучше всего обогащаются частицы крупностью 0,15-0,04 мм. Для разделения частиц мельче 40 мкм наиб. пригодны фло-тац. колонны, в к-рых исходная пульпа после смешения с флотореагентами поступает в среднюю или верх. часть (ниже уровня пенного слоя), где встречается с восходящим потоком пузырьков воздуха, вводимого в ниж. часть.
Благодаря противотоку пульпы и воздуха, а также большей, чем в других флотац. машинах, вторичной минерализации пенного слоя достигается высокая селективность процесса. Для флотации частиц крупнее 0,15 мм в России разработаны машины пенной сепарации, в к-рых пульпу подают на слой пены, удерживающей только гидрофобизированные частицы, а также машины кипящего слоя с восходящими потоками аэрированной жидкости.
В технологии флотации большое внимание уделяется качеству воды, к-рое характеризуется пределами содержания взвешенных частиц, катионов и анионов, рН, жесткостью и т. д. Для достижения требуемого качества воду подвергают спец. подготовке, включающей удаление с помощью коагулянтов и флокулянтов взвешенных частиц, электрохим. обработку, корректировку ионного состава воды подачей извести, к-т, щелочей и др. (см. также Водоподготовка).
Совершенство флотации, кроме качества получаемых концентратов, уровня извлечения полезных компонентов, расходов флотореагентов и т. п., определяется также степенью использования оборотной воды. Напр., на флотац. фабриках США, обогащающих фосфатные руды, при расходе воды 11,2-84,2 м 3 на 1 т руды доля водооборота составляет 66-95%; на фосфатных фабриках бывшего СССР расходуется 13,8-35,7 м 3 воды на 1 т руды при водообороте 80-100%.
Целевые продукты флотации направляют для обезвоживания в непрерывно действующие отстойники-сгустители, гидросепараторы и гидроциклоны (40-60% влаги в сгущенном продукте), фильтры (10-15%) и сушилки (1-3% влаги). Для ускорения сгущения и отстаивания пульпы обрабатывают реагента-ми-флокулянтами (полиакриламид, полисахариды и др.) и магн. методами.
Осн. направления совершенствования процесса
1. Разработка бессточных систем, основанных на использовании селективных флотореагентов, обеспечивающих разделение минералов в воде с повышенной жесткостью.
2. Более широкое применение методов электрохим. активации флотации путем направленного изменения флотац. св-в минералов, регулирования окислит.-восстановит. потенциала и ионного состава жидкой фазы пульпы.
3. Использование флотац.-хим. технологий переработки бедных и труднообогатимых руд с целью комплексного применения сырья и охраны окружающей среды.
4. Дальнейшее совершенствование конструкций флотац. машин с камерами большой емкости, обеспечивающих снижение капитальных и энергетич. затрат, путем улучшения аэрац. характеристик машин, использования износостойких материалов, автоматизир. основных узлов.
Кроме того, совершенствование флотации идет по пути синтеза новых флотореагентов, замены воздуха др. газами (азот, кислород), а также внедрения систем управления параметрами жидкой фазы флотац. пульпы.
Лит.: Краткая химическая энциклопедия, т. 5, M., 1967, с. 455-59; Теория и технология флотации руд, M., 1980; Рубинштейн Ю.Б., Филиппов Ю.А., Кинетика флотации, M., 1980; Глембоцкий В.А., Клас-сен В.И., Флотационные методы обогащения, 2 изд., M., 1981; Справочник по обогащению руд. Основные процессы, 2 изд., M., 1983; Абрамов А. А., Флотационные методы обогащения, M., 1984; Дерягин Б.В., Духин С. С., Pyлев H. H., Микрофлотация, M., 1986; Методы исследования флотационного процесса, M., 1990; Мещеряков H. Ф., Кондиционирующие и флотационные аппараты и машины, M., 1990; Горная энциклопедия, т. 4, M., 1989, с. 576-77, т. 5, M., 1991, с. 319-23. Ю. В. Рябов.
Способ очистки сточных вод флотацией — что это такое и какие виды бывают?
Очистка многих видов производственных сточных вод проводится в несколько этапов, одним из которых является флотация. Суть процесса состоит в фиксировании частичек загрязнений на поверхности пузырьков растворенного воздуха. Агрегированные комплексы образуют на поверхности пену, которую удаляют специальными устройствами.
Флотационный способ очистки сточных вод – это разновидность адсорбции на воздушных микроскопических капсулах, позволяющая разделять смеси, выделять многие виды грязи из водной среды.
Суть метода
При флотации сточные воды насыщаются тем или иным способом воздухом, пузырьки которого присоединяют частицы грязи, образуя флотокомплексы. Сформировавшиеся агрегаты поднимаются на поверхность, образуя пенный концентрат флотационного шлама.
Чем быстрее получатся адсорбированные комплексы из примесей, тем скорее они всплывут на поверхность в виде пены, легче и эффективнее произойдет очистка.
Флотация успешно применяется для удаления веществ, «боящихся» воды, с явно выраженными гидрофобными свойствами:
Все примеси, отделяемые флотационным способом, представляют собой дисперсные частицы, которые не оседают при отстаивании.
Она проводится непрерывно, имеет большой диапазон возможного применения. Процесс идет с высокой скоростью, приводит к получению шлама с пониженной влажностью, который впоследствии можно рекуперировать.
Сложность проведения очистки таким способом обусловлена необходимостью строго контролировать количество и размеры воздушных пузырьков, в некоторых случаях увеличивать гидрофобность частиц с помощью дополнительно вводимых в среду реагентов.
Главная действующая сила при флотационной очистке – это микроскопические полости воздуха, которые получают непосредственным выделением из воды или дроблением газовой составляющей по всей толще жидкости.
Способ получения насыщенных воздухом стоков, дробления пузырьков определяет классификацию флотационных методов.
С выделением воздуха из раствора
Технология очистки посредством выделения пузырьков из загрязненной водной среды подразумевает использование напора или вакуума.
Напорная
При напорной очистке флотацией в раствор, перекачанный в сатуратор, нагнетают воздушный поток. После чего масса поступает во флотационную камеру, давление в которой равно атмосферному.
Образовавшиеся воздушные капсулы фиксируют на своей поверхности частицы примесей; агрегированные комплексы поднимаются в верхний слой, образуя флотационную пену.
Подробнее о напорном способе флотационной очистки сточных вод смотрите в видео:
Эрлифтная
Для удаления отходов из сточных вод, поставляемых в химической промышленности, часто применяют эрлифтную модификацию метода. Очистка происходит благодаря перепадам высот, на которых расположены резервуары, что значительно сокращает энергозатраты на проведение флотации.
Емкость со сточной водой располагается на высоте, достигающей 30 м. Грязный поток поступает в аэратор, расположенный значительно ниже. В него нагнетают воздух, а затем поднимают массу по эрлифтным трубам во флотационную камеру.
Подъем воздушного потока стимулирует образование сначала воздушных пузырьков, а затем агрегированных комплексов. Вся грязь всплывает в верхнем слое, снизу остается относительно очищенная вода, которую подвергают дальнейшей обработке для приведения в нормальное состояние.
Вакуумная
При таком способе очистки водный раствор аэрируют для насыщения воздухом, затем в специальном отсеке удаляют нерастворившуюся воздушную часть. В камере флотации полученный раствор попадает в зону пониженного давления, значения которого меньше, чем атмосферные показатели.
Это приводит к обильному появлению пузырьков в окружении спокойной окружающей среды. Прилипание примесей к поверхности происходит прочно, сохраняется надежно до полного всплывания агрегата на поверхность.
С насыщением раствора воздухом
При некоторых видах загрязнений сточных масс воды раствор дополнительно насыщают воздухом по одному из нескольких возможных алгоритмов.
Импеллерная
Насыщение посредством небольших специальных турбин – импеллеров позволяет получать пузырьки маленьких размеров, которые могут адсорбировать молекулы жиров и продуктов переработки нефти.
Вращение лопастей, сориентированных вверх, создает вихревое движение в водной массе, приводит к образованию большого количества мелких пузырьков одинаково маленькой величины.
Вращение импеллера производится со строго заданной скоростью, обеспечивающей образование большого количества мелких пузырьков.
Метод позволяет убрать из стоков нерастворимые частицы при концентрации их в растворе, достигающей 3 г/л, а также компоненты нефтяных фракций, молекулы жиров.
Безнапорная и пневматическая
Без напора раствор можно насытить воздухом посредством вращения рабочего колеса, соединенного с насосом. Безнапорным способом формируются относительно большие пузырьки воздуха, которые фиксируют на себе:
Получившиеся агрегаты в целостном состоянии поднимаются вверх, очищая стоки.
При использовании пневматического нагнетания воздуха трубы с форсунками кладут внизу флотационных емкостей. Пневматические установки с форсунками на дне применяют в случае, если в среде имеются агрессивные вещества, контакт которых с вращающимися рабочими деталями допускать нельзя.
Барботажная
В качестве источников для насыщения сточных вод воздушными пузырьками иногда используются пористые структуры с одинаково маленькими ячейками, через которые с заданной скоростью пропускают воздушный поток.
Диаметр пор не превышает 20 мкм, что создает возможность подачи микроскопических порций воздуха.
Достоинством метода является интенсивное насыщение стоков, неудобство заключается в том, что мелкие ячейки часто забиваются грязевыми примесями. Если объем сточной воды не очень велик барботаж проводится в камере с пористыми колпачками. Агрегированная грязь образует пену в верхнем слое, которая стекает за пределы резервуара по специальному каналу.
Электролитическая
Большую эффективность демонстрирует электролиз сточных вод, при котором на катоде выделяется водород, а на анодном электроде газообразный кислород. Интенсивность электролиза можно регулировать составом и формой электродов.
Химической и биологической природы
Применение механических способов образования агрегатов и всплывание их на поверхность не всегда приводит к полному выделению дисперсных частиц. В качестве дополнительного источника газовых пузырьков используются химические реагенты окислительной или карбонатной природы.
Хлорсодержащие окислители проводят обеззараживание, выделяют в пространство молекулы
Карбонатные добавки инициируют образование углекислого газа. Образующиеся газовые пузырьки адсорбируют примеси и выносят их в поверхностный пенный слой.
При флотационной очистке сточных вод с большим содержанием органических отходов, чаще всего бытового происхождения, образуется рыхлая пена. Для ее уплотнения используют биологическую технологию, которая заключается в том, что смесь нагревают и оставляют на несколько дней.
Благодаря присутствию микроорганизмов биомасса в таких условиях активно бродит, выделяя газы, которые
Направления применения
Флотация позволяет убрать из растворов разнообразные примеси, находящиеся в дисперсном состоянии.
Они образуются как побочный продукт при следующих производственных процессах:
Флотацией очищают сточные воды, образующиеся на машиностроительных заводах, пищевых предприятиях, а также отделяют ил после биохимической очистки грязных водных растворов различного происхождения.
Заключение
Флотационный способ очистки позволяет убрать частицы грязи, не склонные к оседанию. Для повышения эффективности в сточные воды могут добавлять реагенты, увеличивающие или уменьшающие интенсивность приклеивания частиц к воздушным пузырькам. Иногда применяют соединения, стимулирующие образование пены, что ускоряет ее последующее отделение.
Флотация проводится при минимальном количестве дополнительных устройств, которые включают только агрегаты для выделения или подачи воздуха и средства удаления пенного слоя. Метод дает хорошие результаты при минимальных затратах.