как направлены силовые линии по отношению к поверхности заряженного проводника

Учебники

Журнал «Квант»

Общие

Кикоин А.К. Теорема, позволяющая решать основные задачи электростатики //Квант. — 1984. — № 12. — С. 18-20.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

Содержание

Известно, что электростатическое поле часто изображают при помощи силовых линий. Попытаемся установить связь между числом силовых линий N и зарядом q, создающим электрическое поле. Для этого введем понятие потока электрического поля.

Потоком электрического поля через некоторую поверхность будем называть произведение ES, где S — площадь поверхности, а Е — модуль вектора напряженности электрического поля, перпендикулярного этой поверхности. [1] (Понятие «поток» здесь введено по аналогии с потоком жидкости, протекающей через поперечное сечение трубы площадью S в единицу времени, который, как известно, равен υS («Физика 8», §65).)

как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть фото как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть картинку как направлены силовые линии по отношению к поверхности заряженного проводника. Картинка про как направлены силовые линии по отношению к поверхности заряженного проводника. Фото как направлены силовые линии по отношению к поверхности заряженного проводника

Начнем с простейшего случая — одного точечного заряда. Картина силовых линий поля, созданного положительным точечным зарядом q, изображена на рисунке 1. Рассмотрим сферу радиуса r, центром которой служит сам заряд q, и определим поток электрического поля через поверхность этой сферы. Силовые линии, выходящие из заряда, перпендикулярны поверхности сферы, и в каждой точке сферы, модуль напряженности поля равен

Отсюда видно, что поток через поверхность сферы электрического поля, созданного точечным зарядом, не зависит от радиуса сферы, а зависит только от самого заряда q. Поэтому, если провести ряд концентрических сфер, то поток электрического поля через все эти сферы будет одинаковым. Очевидно, что и число силовых линий, пересекающих эти сферы, тоже будет одинаковым.

Условились число силовых линий, выходящих из заряда, принимать равным потоку электрического поля:

\frac NS\), представляющее собой число силовых линий, пересекающих единицу площади поверхности, перпендикулярной (ортогональной) силовым линиям, называют густотой силовых линий. Ясно, что она характеризует величину напряженности поля в данном месте.

Можно показать, что поток электрического поля, а значит и число силовых линий, равняется \(

\frac<\varepsilon_0>\) не только для поля одного точечного заряда, но и для поля, создаваемого любой совокупностью точечных зарядов, в частности — заряженным телом. Тогда в формуле (3) q означает алгебраическую сумму всей совокупности зарядов. Мало того, если сферу заменить любой другой замкнутой поверхностью, то поток электрического поля, а следовательно и число силовых линий, пересекающих ее, не изменится.

Утверждение, что поток электрического поля и число силовых линий через замкнутую поверхность, внутри которой находится система зарядов, равняется \(

\frac<\varepsilon_0>\), где q — алгебраическая сумма зарядов, называется теоремой Гаусса.

Воспользуемся теоремой Гаусса для решения некоторых конкретных задач электростатики.

Чему равна напряженность электростатического поля внутри проводника?

Известно, что проводник — это такое тело, в котором имеются свободные заряды. Эти заряды действительно свободно могут перемещаться по всему объему проводника. Единственным препятствием для их передвижения служит поверхность проводника, которую они сами покинуть не могут.

Рассмотрим изолированный проводник, которому сообщен электрический заряд. Вокруг такого проводника, конечно, создается электростатическое поле. Докажем, что внутри заряженного проводника электростатическое поле отсутствует, то есть напряженность поля равна нулю.

Как известно, в незаряженном проводнике отрицательный заряд всех электронов точно сбалансирован положительным зарядом всех протонов, и их суммарный заряд равен нулю. Но если проводник заряжен, то баланс зарядов нарушается. В проводнике создается избыток свободных электронов, если он заряжен отрицательно, или избыток протонов (недостаток электронов), если он заряжен положительно. В первом случае, взаимно отталкиваясь, избыточные электроны разойдутся друг от друга на максимально возможные расстояния, вследствие чего они расположатся на поверхности проводника (которую покинуть не могут). Внутри же проводника баланс зарядов восстановится, и там суммарный заряд снова станет равным нулю.

Во втором случае, наоборот, часть электронов с поверхности проводника, вследствие сил притяжения к положительным зарядам, устремится внутрь проводника и сбалансирует избыточные положительные заряды. Суммарный заряд внутри проводника снова станет равным нулю, а избыточный положительный заряд сосредоточится на его поверхности.

Выходит, что заряд любого знака, сообщенный проводнику, располагается на его поверхности. Внутри же проводника, то есть внутри замкнутой поверхности, которой в данном случае служит поверхность самого проводника, заряд ранен нулю (q = 0). Но тогда из теоремы Гаусса следует, что

то есть внутри проводника поля нет.

Как направлены силовые линии у поверхности заряженного проводника?

как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть фото как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть картинку как направлены силовые линии по отношению к поверхности заряженного проводника. Картинка про как направлены силовые линии по отношению к поверхности заряженного проводника. Фото как направлены силовые линии по отношению к поверхности заряженного проводника

На любой свободный электрон, находящийся на поверхности заряженного проводника, действуют силы со стороны остальных зарядов поверхности (в объеме проводника сумма положительных и отрицательных зарядов равна нулю). Имея возможность свободно перемещаться по поверхности, электроны сами расположатся так, чтобы результирующая сила, действующая на каждый из них вдоль поверхности, стала равной нулю. Это означает, что проекция напряженности поля на направление касательной к поверхности проводника в любой ее точке равна нулю. А это возможно только при условии, что силовые линии поля направлены перпендикулярно поверхности заряженного проводника (рис. 2).

Какова напряженность поля, созданного заряженной плоскостью?

как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть фото как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть картинку как направлены силовые линии по отношению к поверхности заряженного проводника. Картинка про как направлены силовые линии по отношению к поверхности заряженного проводника. Фото как направлены силовые линии по отношению к поверхности заряженного проводника

На рисунке 3 изображен участок заряженной проводящей плоскости с площадью S, на который приходится заряд q.

Мы знаем, что силовые линии поля, созданного этой плоскостью, всюду перпендикулярны к ней. А чему равняется модуль напряженности электрического поля?

Окружим выбранный участок плоскости замкнутой поверхностью, через которую силовые линии проходят под прямым углом к ней. Для плоскости такой поверхностью служит, например, прямоугольный параллелепипед с основаниями, параллельными плоскости. Силовые линии поля перпендикулярны только этим основаниям, остальные четыре грани параллелепипеда параллельны силовым линиям. Площадь обоих оснований равна 2S.

Из теоремы Гаусса следует, что

Эта формула приведена в §45 «Физики 9» без вывода. Из формулы видно, что напряженность поля в любой его точке не зависит от расстояния до заряженной плоскости. Такое поле называют однородным.

Чему равна напряженность поля заряженного проводящего шара?

как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть фото как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть картинку как направлены силовые линии по отношению к поверхности заряженного проводника. Картинка про как направлены силовые линии по отношению к поверхности заряженного проводника. Фото как направлены силовые линии по отношению к поверхности заряженного проводника

заряженный шар создает вокруг себя такое же поле, как точечный заряд, помещенный в центре шара (см. рис. 4).

Источник

Как направлены силовые линии по отношению к поверхности заряженного проводника

Опытным путём установлен закон Кулона:

сила взаимодействия двух точечных неподвижных зарядов в вакууме пропорциональна произведению модулей зарядов, обратно пропорциональна квадрату расстояния между ними и направлена вдоль прямой, проходящей через эти заряды:

Обратите внимание, что нарушение в конкретных условиях опыта точечности зарядов, их неподвижности или нахождение зарядов не в вакууме может привести к невыполнению соотношения (2.1).

Основной единицей в любой системе единиц называется единица, для которой существует установленная по договорённости принципиальная возможность создания эталона этой единицы. Напомним, что основными единицами системы СИ являются единицы длины метр (м), массы килограмм (кг), времени секунда (с), силы электрического тока ампер (А), термодинамической температуры кельвин (К), количества вещества моль (моль), силы света кандела (кд). Остальные единицы в системе СИ производные, их размерность (выраженная через основные или другие единицы системы) даётся через определения и физические законы, устанавливающие связь между различными физическими величинами. Единицей заряда в системе СИ является кулон (Кл) – заряд, проходящий за `1` с через поперечное сечение проводника при силе тока `1` А.

Запоминать выражение для размерности `k` необязательно, но уметь выводить, используя (2.1), надо.

Приведём значение коэффициента `k` в (2.1) для системы СИ:

как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть фото как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть картинку как направлены силовые линии по отношению к поверхности заряженного проводника. Картинка про как направлены силовые линии по отношению к поверхности заряженного проводника. Фото как направлены силовые линии по отношению к поверхности заряженного проводникакак направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть фото как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть картинку как направлены силовые линии по отношению к поверхности заряженного проводника. Картинка про как направлены силовые линии по отношению к поверхности заряженного проводника. Фото как направлены силовые линии по отношению к поверхности заряженного проводника
Рис. 2.1Рис. 2.2

На рисунках 2.1 и 2.2 показаны случаи для `Q > 0` и `Q

Формулу (2.2) можно обобщить, избавившись от знака модуля:

Силовой линией (линией напряжённости) электрического поля называется непрерывная линия, касательная в каждой точке которой совпадает с направлением вектора напряжённости электрического поля в этой точке. Наглядно электрические поля изображают с помощью силовых линий.

На рис. 2.3 приведена картина силовых линий электрического поля положительного точечного заряда.

как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть фото как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть картинку как направлены силовые линии по отношению к поверхности заряженного проводника. Картинка про как направлены силовые линии по отношению к поверхности заряженного проводника. Фото как направлены силовые линии по отношению к поверхности заряженного проводника
Рис. 2.3

Стрелкой на каждой силовой линии указывается её направление, т. е. направление вектора напряжённости в каждой точке силовой линии. Полезно посмотреть и нарисовать самим картины силовых линий полей из школьного учебника.

Все свойства силовых линий как электрического поля, так и электростатического поля, следуют из определения силовых линий и из законов электродинамики. Приведём некоторые свойства.

1. Силовые линии электрического поля не пересекаются. В противном случае в точках пересечения была бы неопределённость в направлении напряжённости поля.
2. Густота силовых линий электрического поля в пространстве пропорциональна напряжённости электрического поля.
3. Силовые линии электростатического поля не замкнуты. Они начинаются на положительных зарядах (или в бесконечности) и заканчиваются на отрицательных зарядах (или в бесконечности). При этом некоторая группа силовых линий (лучевая трубка) связывает равные по модулю заряды и число силовых линий, выходящих (входящих) из заряженного тела, не зависит от формы тела, а зависит только от величины заряда (пропорционально заряду).

Обратите внимание, что первые два свойства справедливы и для электростатического поля, как частного случая электрического. Третье же свойство справедливо только для электростатического поля, а для произвольного электрического поля выполняется не всегда.

как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть фото как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть картинку как направлены силовые линии по отношению к поверхности заряженного проводника. Картинка про как направлены силовые линии по отношению к поверхности заряженного проводника. Фото как направлены силовые линии по отношению к поверхности заряженного проводника
Рис. 2.4

Источник

Силовые линии электрического поля — характеристика, свойства и направление

Направление силы, действующей на элементарный положительный заряд, обозначают силовыми линиями электрического поля. По сути, это воображаемые полоски со стрелками, позволяющими наглядно увидеть, как распространяется энергия при взаимодействии частиц.

как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть фото как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть картинку как направлены силовые линии по отношению к поверхности заряженного проводника. Картинка про как направлены силовые линии по отношению к поверхности заряженного проводника. Фото как направлены силовые линии по отношению к поверхности заряженного проводника

Свойства и форма изображения распределения позволяет судить о течении явления, определять его главные характеристики. То есть анализировать поле, находить его неоднородности и величину напряжённости.

Общие сведения

Неким фундаментальным свойством природы является электрический заряд. Один из разделов физики занимается изучением его свойств и взаимодействия, называется он электродинамикой. Наиболее интересно для учёных изучение влияния друг на друга заряженных тел.

Бум исследования электрических явлений пришёлся на XIX век. В это время появилось две теории, одна из которых оказалась ошибочной и была опровергнута экспериментами. Эта догадка называлась правилом дальнодействия. Согласно ей один заряд непосредственно действует на другой. То есть чем больше расстояние между взаимодействующими телами, тем меньше сила действия.

как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть фото как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть картинку как направлены силовые линии по отношению к поверхности заряженного проводника. Картинка про как направлены силовые линии по отношению к поверхности заряженного проводника. Фото как направлены силовые линии по отношению к поверхности заряженного проводника

Но на самом деле электрические заряды влияют друг на друга по-другому. Эта теория получила название «Правило близкодействия». Как оказалось, если взять два заряженных тела, например, положительно, то первый заряд на второй не действует. Он просто изменяет вокруг себя пространство, создавая нечто. Эта материя и получила название «Электрическое поле». Именно оно и воздействует на второе тело. Другими словами, на заряд действует материя, создаваемая первой частицей. При этом распространяется она с довольно большой, но конечной, скоростью.

Опыты, проводимые Фарадеем, показали, что если из системы убрать одно из тел, то сила, действующая на вторую частицу, не изменится мгновенно, хотя это и произойдёт довольно скоро. Именно Фарадей и является открывателем электромагнитного поля. В дальнейшем Максвелл смог описать явление теоретически.

Им было установлено, что заряд испытывает влияние поля, даже если поблизости его нет других частиц. Эта сила представляет собой электромагнитную волну.

Электрическое поле можно обнаружить, поместив в неё другой заряд, и исследовать действие наблюдающийся силы. Электромагнитную материю можно описать количественно, поэтому, зная характеристики поля и заряда, можно определить величину силы.

как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть фото как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть картинку как направлены силовые линии по отношению к поверхности заряженного проводника. Картинка про как направлены силовые линии по отношению к поверхности заряженного проводника. Фото как направлены силовые линии по отношению к поверхности заряженного проводника

К основным параметрам электростатического поля, то есть материи, созданной неподвижной частицей в пространстве, относят:

Таким образом, если есть система заряженных тел, то в любой её точке будет существовать силовое электрическое поле. Его можно исследовать через силу, действующую на заряд, находящийся в этой материи.

Так как визуально вектор увидеть нельзя, то используют так называемые силовые линии, указывающие, куда направлено воздействие.

Свойство линий

За величину силы электрополя в пространстве окутывающего тело принимают количество заряда обратного квадрату расстояния до него. Принято, что направление распространения действия направлено от положительного потенциала к отрицательному. Обозначают поле буквой E, а напряжённость H. Причём это векторная величина, представляемая в виде стрелки с определённой длиной и направлением.

как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть фото как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть картинку как направлены силовые линии по отношению к поверхности заряженного проводника. Картинка про как направлены силовые линии по отношению к поверхности заряженного проводника. Фото как направлены силовые линии по отношению к поверхности заряженного проводника

Так как заряд — это источник, то его окружает множество векторов напряжённости. Чтобы не изображать их бесчисленное число, используют силовые линии. Другое их название — интегральные кривые. По сути, это объединённые векторы, где они сами являются касательными к точкам.

Распространение силовых кривых подчиняется определённым правилам.

К основным из них относят следующие:

Изображение линий подчиняется различными правилами. Так, для частиц с большим зарядом плотность линий должна быть выше, чем с меньшим. Если заряд недалеко от источника, то плотность силовых линий гуще. Для кривых проходящих перпендикулярно первичным силам используют эквипотенциальное изображение. Такой тип образуют замкнутые контуры. В них каждая точка напряжённости будет иметь одинаковое значение потенциала. При пересечении частицей линий говорят о совершении работы.

как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть фото как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть картинку как направлены силовые линии по отношению к поверхности заряженного проводника. Картинка про как направлены силовые линии по отношению к поверхности заряженного проводника. Фото как направлены силовые линии по отношению к поверхности заряженного проводника

С помощью линий наглядно показывают направление вектора напряжённости в разных точках материи. Для этого их рисуют так, что касательная к каждой будет параллельна напряжённости. Но из-за того, что прямая указывает направление вектора с точностью до 180°, задают полярность обхода. Поэтому стрелку чертят так, чтобы она была сонаправлена с напряжённостью.

Силы электрического поля не могут пересекаться, а эквипотенциальные кривые образуют замкнутые контуры. В тех же точках, где линии перекрещиваются друг с другом, взаимодействие происходит в перпендикулярной плоскости.

Иными словами, на рисунке получается изображение, напоминающее собой координатную сетку. Причём по точкам пересечения и описывают характер электрополя.

Напряжённость поля

Взаимодействие между заряженными телами описывается количественной характеристикой, определяющей структуру материи. Эта величина называется напряжённостью и определяется из отношения E = F / q, где F — сила, а q — заряд, помещённый в поле. Для однородной изотропной среды выражение можно получить, используя закон Кулона: E = (1 / 4 pE) * (q * r / er 2 r), где r — радиус-вектор.

Линии распространения напряжённости поля одинокого заряда во всех точках имеют радиальный вид. Кривые лежат от частицы при q > 0, к телу при q Физика распространения

Если рассматривать одинокую частицу, то линии силы будут исходить от неё в радиальном направлении. При взаимодействии же двух и более зарядов на вид распространения влияет напряжённость. Чтобы нарисовать, как будут выглядеть линии, следует сложить векторы напряжённости. Их результирующая и будет характеризовать суммарное поле.

При составлении картинки распространения поля нужно учитывать, что точки соприкосновения на силовой линии определяются вектором напряжённости. Чтобы математически описать силовые кривые, необходимо составить уравнения. Вектора в них будут являться производными первого порядка. По сути, это обыкновенные касательные.

как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть фото как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть картинку как направлены силовые линии по отношению к поверхности заряженного проводника. Картинка про как направлены силовые линии по отношению к поверхности заряженного проводника. Фото как направлены силовые линии по отношению к поверхности заряженного проводника

Каждая частица, добавленная в электромагнитное поле, оказывает на него влияние. Соответственно будет изменяться и узор кривых сил. Но в любом случае основой для построения визуализированного рисунка будет вектор напряжённости каждого источника поля. При этом правило, что линии напряжённости начинаются на положительном заряде, а заканчиваются на отрицательном, условное.

Довольно интересным для изучения является процесс возникновения электрического поля между заряженными бесконечными плоскостями. Созданная однородная материя между пластинками будет распространяться в параллельном направлении, то есть линии пересекаться не будут. Если же в зазор между ними внести точечный заряд, то кривые начнут изгибаться по дуге, поле станет неоднородным, а значение напряжённости будет зависеть от плотности.

Распространение поля подчиняется следующим правилам:

Электрические силы при внесении заряженной частицы в поле совершают работу. При незначительном воздействии её можно описать так: A = F * l * cos (a) = E * q * L. Таким образом, структура распространения зависит от расстояния между частицами.

Если же изменить направление перемещения заряженного тела на противоположное, то знак поменяет и работа. А это значит, что замкнутая траектория кулоновских сил будет равна нулю.

Источник

как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть фото как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть картинку как направлены силовые линии по отношению к поверхности заряженного проводника. Картинка про как направлены силовые линии по отношению к поверхности заряженного проводника. Фото как направлены силовые линии по отношению к поверхности заряженного проводника

Свойства и форма изображения распределения позволяет судить о течении явления, определять его главные характеристики. То есть анализировать поле, находить его неоднородности и величину напряжённости.

Общие сведения

Неким фундаментальным свойством природы является электрический заряд. Один из разделов физики занимается изучением его свойств и взаимодействия, называется он электродинамикой. Наиболее интересно для учёных изучение влияния друг на друга заряженных тел.

Бум исследования электрических явлений пришёлся на XIX век. В это время появилось две теории, одна из которых оказалась ошибочной и была опровергнута экспериментами. Эта догадка называлась правилом дальнодействия. Согласно ей один заряд непосредственно действует на другой. То есть чем больше расстояние между взаимодействующими телами, тем меньше сила действия.

как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть фото как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть картинку как направлены силовые линии по отношению к поверхности заряженного проводника. Картинка про как направлены силовые линии по отношению к поверхности заряженного проводника. Фото как направлены силовые линии по отношению к поверхности заряженного проводника

Но на самом деле электрические заряды влияют друг на друга по-другому. Эта теория получила название «Правило близкодействия». Как оказалось, если взять два заряженных тела, например, положительно, то первый заряд на второй не действует. Он просто изменяет вокруг себя пространство, создавая нечто. Эта материя и получила название «Электрическое поле». Именно оно и воздействует на второе тело. Другими словами, на заряд действует материя, создаваемая первой частицей. При этом распространяется она с довольно большой, но конечной, скоростью.

Опыты, проводимые Фарадеем, показали, что если из системы убрать одно из тел, то сила, действующая на вторую частицу, не изменится мгновенно, хотя это и произойдёт довольно скоро. Именно Фарадей и является открывателем электромагнитного поля. В дальнейшем Максвелл смог описать явление теоретически.

Им было установлено, что заряд испытывает влияние поля, даже если поблизости его нет других частиц. Эта сила представляет собой электромагнитную волну.

Электрическое поле можно обнаружить, поместив в неё другой заряд, и исследовать действие наблюдающийся силы. Электромагнитную материю можно описать количественно, поэтому, зная характеристики поля и заряда, можно определить величину силы.

как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть фото как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть картинку как направлены силовые линии по отношению к поверхности заряженного проводника. Картинка про как направлены силовые линии по отношению к поверхности заряженного проводника. Фото как направлены силовые линии по отношению к поверхности заряженного проводника

К основным параметрам электростатического поля, то есть материи, созданной неподвижной частицей в пространстве, относят:

Таким образом, если есть система заряженных тел, то в любой её точке будет существовать силовое электрическое поле. Его можно исследовать через силу, действующую на заряд, находящийся в этой материи.

Так как визуально вектор увидеть нельзя, то используют так называемые силовые линии, указывающие, куда направлено воздействие.

Свойство линий

За величину силы электрополя в пространстве окутывающего тело принимают количество заряда обратного квадрату расстояния до него. Принято, что направление распространения действия направлено от положительного потенциала к отрицательному. Обозначают поле буквой E, а напряжённость H. Причём это векторная величина, представляемая в виде стрелки с определённой длиной и направлением.

как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть фото как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть картинку как направлены силовые линии по отношению к поверхности заряженного проводника. Картинка про как направлены силовые линии по отношению к поверхности заряженного проводника. Фото как направлены силовые линии по отношению к поверхности заряженного проводника

Так как заряд — это источник, то его окружает множество векторов напряжённости. Чтобы не изображать их бесчисленное число, используют силовые линии. Другое их название — интегральные кривые. По сути, это объединённые векторы, где они сами являются касательными к точкам.

Распространение силовых кривых подчиняется определённым правилам.

К основным из них относят следующие:

Изображение линий подчиняется различными правилами. Так, для частиц с большим зарядом плотность линий должна быть выше, чем с меньшим. Если заряд недалеко от источника, то плотность силовых линий гуще. Для кривых проходящих перпендикулярно первичным силам используют эквипотенциальное изображение. Такой тип образуют замкнутые контуры. В них каждая точка напряжённости будет иметь одинаковое значение потенциала. При пересечении частицей линий говорят о совершении работы.

как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть фото как направлены силовые линии по отношению к поверхности заряженного проводника. Смотреть картинку как направлены силовые линии по отношению к поверхности заряженного проводника. Картинка про как направлены силовые линии по отношению к поверхности заряженного проводника. Фото как направлены силовые линии по отношению к поверхности заряженного проводника

С помощью линий наглядно показывают направление вектора напряжённости в разных точках материи. Для этого их рисуют так, что касательная к каждой будет параллельна напряжённости. Но из-за того, что прямая указывает направление вектора с точностью до 180°, задают полярность обхода. Поэтому стрелку чертят так, чтобы она была сонаправлена с напряжённостью.

Силы электрического поля не могут пересекаться, а эквипотенциальные кривые образуют замкнутые контуры. В тех же точках, где линии перекрещиваются друг с другом, взаимодействие происходит в перпендикулярной плоскости.

Иными словами, на рисунке получается изображение, напоминающее собой координатную сетку. Причём по точкам пересечения и описывают характер электрополя.

Напряжённость поля

Взаимодействие между заряженными телами описывается количественной характеристикой, определяющей структуру материи. Эта величина называется напряжённостью и определяется из отношения E = F / q, где F — сила, а q — заряд, помещённый в поле. Для однородной изотропной среды выражение можно получить, используя закон Кулона: E = (1 / 4 pE) * (q * r / er 2 r), где r — радиус-вектор.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *