как перевести комплексное число в алгебраическую форму
Комплексные числа
Формы
Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:
Далее с примерами решений вы узнаете как переводить комплексные числа из одной формы в другую путем несложных действий в обе стороны.
Изображение
Изучение выше мы начали с алгебраической формы. Так как она является основополагающей. Чтобы было понятно в этой же форме изобразим комплексное число на плоскости:
Вычислить сумму и разность заданных комплексных чисел:
Сначала выполним сложение. Для этого просуммируем соответствующие мнимые и вещественные части комплексных чисел:
Аналогично выполним вычитание чисел:
Выполнить умножение и деление комплексных чисел:
Так, теперь разделим первое число на второе:
Суть деления в том, чтобы избавиться от комплексного числа в знаменателе. Для этого нужно домножить числитель и знаменатель дроби на комплексно-сопряженное число к знаменателю и затем раскрываем все скобки:
Разделим числитель на 29, чтобы записать дробь в виде алгебраической формы:
Для возведения в квадрат достаточно умножить число само на себя:
Пользуемся формулой для умножения, раскрываем скобки и приводим подобные:
В этом случае не всё так просто как в предыдущем случае, когда было возведение в квадрат. Конечно, можно прибегнуть к способу озвученному ранее и умножить число само на себя 7 раз, но это будет очень долгое и длинное решение. Гораздо проще будет воспользоваться формулой Муавра. Но она работает с числами в тригонометрической форме, а число задано в алгебраической. Значит, прежде переведем из одной формы в другую.
Вычисляем значение модуля:
Найдем чем равен аргумент:
$$ \varphi = arctg \frac<3> <3>= arctg(1) = \frac<\pi> <4>$$
Записываем в тригонометрическом виде:
Преобразуем в алгебраическую форму для наглядности:
Представим число в тригонометрической форме. Найдем модуль и аргумент:
Используем знакомую формулу Муавра для вычисления корней любой степени:
Как перевести комплексное число в алгебраическую форму
где x и y – действительные числа, а i так называемая мнимая единица. Соотношение для мнимой единицы
Понятия «больше» и «меньше» для комплексных чисел не вводятся.
Числа z = x + iy и называются комплексно сопряженными.
Алгебраической формой комплексного числа называется з апись числа z в виде z = x + iy.
Модуль r и аргумент φ можно рассматривать как полярные координаты вектора , изображающего комплексное число z = x + iy (см. рис. 7.1). Тогда из соотношений сторон в прямоугольном треугольнике получаем
Равенство (7.3) есть тригонометрическая форма комплексного числа. Модуль r = |z| однозначно определяется по формуле
Аргумент определяется из формул:
Используя формулу Эйлера
комплексное число можно записать в так называемой показательной (или экспоненциальной) форме
где r =| z | — модуль комплексного числа, а угол ( k =0;–1;1;–2;2…).
Пример 7.1. Записать комплексные числа в тригонометрической и показательной формах.
На множестве комплексны х чисел определен ряд операций.
Из (7.11) следует важнейшее соотношение i 2 = –1. Действительно,
Видно, что при умножении комплексных чисел в тригонометрической форме их модули перемножаются, а аргументы складываются. Это правило распространяется на любое конечное число множителей. Нетрудно видеть, что если есть n множителей и все они одинаковые, то частным случаем равенства (7.12) является формула возведения комплексного числа в натуральную степень:
(7.13) называется первой формулой Муавра.
Произведение двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
На практике при нахождении частного двух комплексных чисел удобно умножить числитель и знаменатель дроби на число, сопряженное знаменателю, с дальнейшим применением равенства i 2 = –1 и формулы разности квадратов.
Деление комплексных чисел осуществляется также и в тригонометрической форме, при этом имеет место формула:
Видно, что при делении комплексных чисел их модули делятся, а аргументы вычитаются соответственно.
Частное двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
Пользуясь формулой (7.11), вычислим их произведение
На основании формулы (7.14) вычислим их частное
Решение. Используя (7.4) и (7.5), получаем:
Аналогично, для z 2 можно записать:
По формулам (7.12) и (7.16) получим в тригонометрической форме:
Пользуясь формулами (7.14) и (7.17), получим в показательной форме:
в натуральную степень, определенному ранее формулой (7.13).
(7.18) называется второй формулой Муавра.
Пример 7.4. Найти все корни уравнения z 4 +16=0.
Теорема 7.1 (основная теорема алгебры). Для всякого многочлена с комплексными коэффициентами
Приведем еще одну теорему, имеющую место над множеством комплексных чисел.
Таким образом, произведение линейных множителей, соответствующих сопряженным корням, можно заменить квадратным трехчленом с действительными коэффициентами, а соответствующее квадратное уравнение будет иметь отрицательный дискриминант.
Как перевести комплексное число в алгебраическую форму
Геометрическая интерпретация комплексного числа – точка (или вектор) на плоскости.
По оси абсцисс расположена ось действительных чисел (положительное направление обозна чено +1), а по оси ординат – ось мнимых чисел (положительное направление обозначено +j).
Проекция вектора на ось +1 – действительная часть, а проекция на ось +j – мнимая часть. Таким образом, алгебраическая форма записи соответствует декартовой (прямоуг ольной) системе координат (обозначим её xy).
Этот же вектор м ожет быть задан и в полярной системе координат. То есть через длину вектора I и угол поворота ψ (обозначим её rθ). Полярной системе координат соответствует показательная форма записи комплексного числа
где I – модуль комплексного числа; ψ – аргумент (или попросту угол)
Обе формы записи (алгебраическая и показательная) используются при расчётах: складывать и вычитать комплексные числа удобно в алгебраической форме записи, а делить и умножать – в показательной. Следовательно, нужно уметь переводить комплексные числа из алгебраической формы записи в показательную (→rθ) и из показательной в алгебраическую (→xy).
Основные операции с комплексными числами
Сложение
Пусть два комплексных числа заданы в алгебраической форме записи
То есть при сложении действительные части складываются с действительными, а мнимые с мнимыми.
Вычитание – аналогично:
Умножение
Пусть два комплексных числа заданы в показательной форме записи
То есть при умножении модули перемножаются, а аргументы складываются
Деление
Пусть два комплексных числа заданы в показательной форме записи
То есть при делении модули делятся, а аргументы вычитаются.
Операции с комплексными числами на инженерных калькуляторах
Первое на что нужно обратить внимание при включении калькулятора это, в каких единицах измеряются углы.
Как преобразовать показательную форму записи величины в алгебраическую
В общем случае алгебраическая форма записи комплексной величины выглядит следующим образом:
Но это математическая запись. В электротехнике принято мнимую единицу обозначать не «i», а буквой «j» (это сделано для того, чтобы не было путаницы с токами, которые чаще всего и обозначаются латинской буквой «i»). Тогда в электротехнике вы скорее всего увидите запись:
При этом мнимая единица может стоять как первым множителем, так и вторым. То есть это же число можно записать:
Что касается показательной формы записи, то в она обычно выглядит так:
Чтобы легко понять как эти формы записи связаны друг с другом, достаточно рассмотреть изображение вектора на комплексной плоскости:
Отсюда действительная часть комплексного числа:
Значит, мнимая часть комплексного числа:
Разберем пример. Пусть задано напряжение в показательной форме:
Определим действительную часть алгебраической формы записи:
Теперь мнимую часть:
В качестве итога, запишем алгоритм перевода показательной формы записи комплексного числа в алгебраическую:
1.Перевод комплексного числа из одной формы в другую. Как показано выше, комплексное число можно записать в одной из трех форм:
– алгебраическая форма;
– тригонометрическая форма;
– показательная форма.Для записи комплексного числа в алгебраической форме необходимо знать его действительную часть a и коэффициент при мнимой единице b. Для тригонометрической и показательной форм – модуль r и аргумент . Поэтому для перевода комплексных чисел из одной формы в другую можно предложить следующие алгоритмы.
А) Перевод из алгебраической формы в тригонометрическую и показательную
Построить вектор – геометрическое изображение комплексного числа.
Отметить на чертеже острый угол от вектора до ближайшей к нему части оси Ox и угол – от положительной части оси Ox до вектора.
Вычислить модуль .
Вычислить и определить по его значению острый угол .
По найденному значению и чертежу определить аргумент .
Подставить найденные значения модуля и аргумента в запись тригонометрической и показательной форм.
Пример. Записать в тригонометрической и показательной формах комплексное число .
На чертеже построен вектор и отмечены углы и .
Модуль
.
, значит = 30.
Из чертежа видно, что = 180 – = 150. Поэтому .
б) Перевод комплексного числа из тригонометрической формы в алгебраическую
Вычислить синус и косинус.
Раскрыть скобки.Пример.Записать комплексное число в алгебраической форме.
Р ешение.
в) Перевод комплексного числа из тригонометрической формы в показательную и наоборот. В обеих формах комплексное число определяется модулем и аргументом. Поэтому алгоритм перевода состоит из одного действия:
Переписать в нужной форме.Пример.Записать комплексное число в тригонометрической форме.
Решение.Из записи числа видно, что его модуль r = 5 и аргумент = 200. Поэтому тригонометрическая форма числа имеет вид
г) Перевод из комплексного числа показательной формы в алгебраическую.
Выше описан перевод комплексного числа из показательной формы в тригонометрическую и из тригонометрической в алгебраическую. Поэтому алгоритм имеет вид:1.Выполнить требуемый перевод через тригонометрическую форму.
2. Раскрытие неопределенности. При вычислении некоторых пределов возникает ситуация, которую называют неопределённостью. Например, если f(n) и g(n)
при n
, то попытка произвести непосредственное вычисление предела
приводит к неопределённости
. Аналогичным образом появляются неопределённости следующих типов:
;
;
;
и т.п. Для того, чтобы раскрыть неопределенность, требуется применить тот или иной технический приём. В частности, неопределённости
обычно исчезает после сокращения дроби на множитель, который определяет наибольшую скорость роста численности или (на выбор) знаменателя. Теорема (правило Лопиталя). Пусть функции f(x) и g(x) дифференцируемы в некоторой окрестности точки a, за исключением, быть может, самой точки a, и пусть
или
.Тогда, если существует предел отношения производных этих функций
, то существует и предел отношения самих функций f(x)/g(x) при x→а, причем
.Таким образом, коротко правило Лопиталя можно сформулировать следующим образом: предел отношения двух бесконечно малых или двух бесконечно больших величин равен пределу отношения их производных.
Неопределенность типа Если при вычислении получается неопределенность типа
, то можно использовать правило Лопиталя, преобразовав предварительно выражение следующим образом:
или же
.
1. Под числовой последовательностью понимается функция
, заданная на множестве N натуральных чисел. Обозначается:
или
,
. Число
— первый член последовательности,
— второй,….,
— общий или n член последовательности. Монотонная последовательность — это невозрастающая, либо неубывающая последовательность. Ограниченная последовательность. Последовательность (чисел, точек и т.п.), члены которой образуют ограниченное множество, называется ограниченной. Аналогично последовательность называется ограниченной сверху (снизу), если ее члены образуют ограниченное сверху (снизу) множество.
2. Формула корней квадратного уравнения с отрицательным дискриминантом.