как подобрать шестерню по образцу
Модуль зубьев зубчатого колеса
Зубчатая передача впервые была освоена человеком в глубокой древности. Имя изобретателя осталось скрыто во тьме веков. Первоначально зубчатые передачи имели по шесть зубьев — отсюда и пошло название «шестерня». За многие тысячелетия технического прогресса передача многократно усовершенствовалась, и сегодня они применяются практически в любом транспортном средстве от велосипеда до космического корабля и подводной лодки. Используются они также в любом станке и механизме, больше всего шестеренок используется в механических часах.
Что такое модуль зубчатого колеса
Современные шестерни далеко ушли от своих деревянных шестизубых предков, изготавливаемых механиками с помощью воображения и мерной веревочки. Конструкция передач намного усложнилась, тысячекратно возросли скорость вращения и усилия, передаваемые через такие передачи. В связи с этим усложнились и методы их конструирования. Каждую шестеренку характеризует несколько основных параметров
Одним из самых универсальных характеристик является модуль зубчатого колеса. Существует для подвида — основной и торцевой.
В большинстве расчетов используется основной. Он рассчитывается применительно к делительной окружности и служит одним из важнейших параметров.
Для расчета этого параметра применяют следующие формулы:
Параметры зубчатых колес
Модуль зубчатого колеса можно рассчитать и следующим образом:
где h — высота зубца.
где De — диаметр окружности выступов,а z — число зубьев.
Что же такое модуль шестерни?
это универсальная характеристика зубчатого колеса, связывающая воедино такие его важнейшие параметры, как шаг, высота зуба, число зубов и диаметр окружности выступов. Эта характеристика участвует во всех расчетах, связанных с конструированием систем передач.
Формула расчета параметров прямозубой передачи
Чтобы определить параметры прямозубой шестеренки, потребуется выполнить некоторые предварительные вычисления. Длина начальной окружности равна π×D, где D — ее диаметр.
Расчет модуля зубчатого колеса
Шаг зацепления t – это расстояние между смежными зубами, измеренное по начальной окружности. Если это расстояние умножить на число зубов z, то мы должны получить ее длину:
проведя преобразование, получим:
Если разделить шаг на число пи, мы получим коэффициент, постоянный для данной детали зубчатой передачи. Он и называется модулем зацепления m.
размерность модуля шестерни — миллиметры. Если подставить его в предыдущее выражение, то получится:
выполнив преобразование, находим:
Отсюда вытекает физический смысл модуля зацепления: он представляет собой длину дуги начальной окружности, соответствующей одному зубцу колеса. Диаметр окружности выступов De получается равным
где h’- высота головки.
Высоту головки приравнивают к m:
Проведя математические преобразования с подстановкой, получим:
Диаметр окружности впадин Di соответствует De за вычетом двух высот основания зубца:
где h“- высота ножки зубца.
Для колес цилиндрического типа h“ приравнивают к значению в 1,25m:
Устройство зубчатого колеса
Выполнив подстановку в правой части равенства, имеем:
что соответствует формуле:
и если выполнить подстановку, то получим:
Иначе говоря, головка и ножка зубца относятся друг к другу по высоте как 1:1,25.
Следующий важный размер, толщину зубца s принимают приблизительно равной:
Поскольку шаг t приравнивается к суммарной толщине зубца s и впадины sв, получаем формулы для ширины впадины
Характеристики конструкции оставшейся части зубчатой детали определяются следующими факторами:
Детальные методики исчисления этих параметров приводятся в таких ВУЗовских курсах, как «Детали машин» и других. Модуль шестерни широко используется и в них как один из основных параметров.
Для отображения шестеренок методами инженерной графики используются упрощенные формулы. В инженерных справочниках и государственных стандартов можно найти значения характеристик, рассчитанные для типовых размеров зубчатых колес.
Исходные данные и замеры
На практике перед инженерами часто встает задача определения модуля реально существующей шестерни для ее ремонта или замены. При этом случается и так, что конструкторской документации на эту деталь, как и на весь механизм, в который она входит, обнаружить не удается.
Самый простой метод — метод обкатки. Берут шестерню, для которой характеристики известны. Вставляют ее в зубья тестируемой детали и пробуют обкатать вокруг. Если пара вошла в зацепление — значит их шаг совпадает. Если нет — продолжают подбор. Для косозубой выбирают подходящую по шагу фрезу.
Такой эмпирический метод неплохо срабатывает для зубчатых колес малых размеров.
Для крупных, весящих десятки, а то и сотни килограмм, такой способ физически нереализуем.
Результаты расчетов
Для более крупных потребуются измерения и вычисления.
Как известно, модуль равен диаметру окружности выступов, отнесенному к числу зубов плюс два:
Последовательность действий следующая:
Зубец колеса и его параметры
Данный метод подходит как для прямозубых колес, так и для косозубых.
Расчет параметров колеса и шестерни косозубой передачи
Расчетные формулы для важнейших характеристик шестерни косозубой передачи совпадают с формулами для прямозубой. Существенные различия возникают лишь при прочностных расчетах.
Подбор сменных зубчатых колес. Программа для подбора
Программа для подбора сменных зубчатых колес
ПОРЯДОК ПОЛЬЗОВАНИЯ ТАБЛИЦАМИ / ПРОГРАММОЙ
Для подбора сменных колес искомое передаточное отношение выражается в виде десятичной дроби с числом знаков соответственно требуемой точности. В «Основных таблицах» для подбора зубчатых колес (стр. 16—400) находим колонку с заголовком, содержащим первые три цифры передаточного отношения; по остальным цифрам находим строку, на которой указаны числа зубьев ведущих и ведомых колес.
Требуется подобрать сменные колеса гитары для передаточного отношения 0,2475586. Сначала находим колонку с заголовком 0,247—0000, а под ним ближайшее значение к последующим десятичным знакам искомого передаточного отношения (5586). В таблице находим число 5595, соответствующее набору сменных колес (23*43) : (47*85). Окончательно получаем:
i = (23*43)/(47*85) = 0,2475595. (1)
Относительная погрешность сравнительно с заданным передаточным отношением :
δ = (0,2475595 — 0,2475586) : 0,247 = 0,0000037.
Строго подчеркиваем: во избежание влияния возможной опечатки нужно обязательно проверить полученное соотношение (1) на калькуляторе. В тех случаях, когда передаточное отношение больше единицы, необходимо выразить его обратную величину в виде десятичной дроби, по найденному значению в таблицах отыскать числа зубьев ведущих и ведомых сменных колес и поменять ведущие и ведомые колеса местами.
Требуется подобрать сменные колеса гитары для передаточного отношения i = 1,602225. Находим обратную величину 1:i = 0,6241327. В таблицах для ближайшего значения 0,6241218 находим набор сменных колес: (41*65) : (61*70). Учитывая, что решение найдено для обратной величины передаточного отношения, меняем местами ведущие и ведомые колеса:
i = (61*70)/(41*65) = 1,602251
Относительная погрешность подбора
δ = (1,602251 — 1,602225) : 1,602 = 0,000016.
Обычно требуется подбирать колеса для передаточных отношений, выраженных с точностью до шестого, пятого, а в отдельных случаях и до четвертого десятичного знака. Тогда семизначные числа, приведенные в таблицах, можно округлять с точностью до соответствующего десятичного знака. Если имеющийся комплект колес отличается от нормального (см. стр. 15), то, например, при настройке цепей дифференциала или обкатки можно выбрать подходящую комбинацию из ряда соседних значений с погрешностью, удовлетворяющей условиям, изложенным на стр. 7—9. При этом некоторые числа зубьев можно заменять. Так, если число зубьев комплекта не свыше 80, то
(58*65)/(59*95) = (58*13)/(59*19) = (58*52)/(59*76)
«пятковую» комбинацию предварительно преобразуют так:
а затем, по полученным множителям подбирают числа зубьев.
ОПРЕДЕЛЕНИЕ ДОПУСТИМОЙ ПОГРЕШНОСТИ НАСТРОЙКИ
Очень важно различать абсолютную и относительную погрешности настройки. Абсолютной погрешностью называют разность между полученным и требуемым передаточными отношениями. Например, требуется иметь передаточное число i = 0,62546, а получено i = 0,62542; абсолютная погрешность будет 0,00004. Относительной погрешностью называют отношение абсолютной погрешности к требуемому передаточному числу. В нашем случае относительная погрешность
δ = 0.00004/0,62546 = 0,000065
Следует подчеркнуть необходимость суждения о точности настройки по относительной погрешности.
Общее правило.
Если какая-либо величина А, получаемая настройкой через данную кинематическую цепь, пропорциональна передаточному отношению i, то при относительной погрешности настройки δ абсолютная погрешность будет Аδ.
Например, если относительная погрешность передаточного отношения δ =0,0001, то при нарезании винта с шагом t отклонение в шаге, зависящее от настройки, будет 0,0001 * t. Та же относительная погрешность при настройке дифференциала зубофрезерного станка даст дополнительное вращение заготовки не на требуемую дугу L, а на дугу с отклонением 0,0001 * L.
Если указан допуск на изделие, то абсолютное отклонение размера вследствие неточности настройки должно составлять только некоторую долю этого допуска. В случае более сложной зависимости какой-либо величины от передаточного отношения полезно прибегать к замене фактических отклонений их дифференциалами.
Настройка цепи дифференциала при обработке винтовых изделий.
Типичной является следующая формула:
где с — постоянная цепи;
β — угол наклона винтовой линии;
n — число заходов фрезы.
Продифференцировав обе части равенства, получим абсолютную погрешность di передаточного отношения
тогда допустимая относительная погрешность настройки
Если допустимое отклонение угла винтовой линии dβ выразить не в радианах, а в минутах, то получим
Например, если угол наклона винтовой линии изделия β = 18°, а допустимое отклонение в направлении зуба dβ = 4″ = 0′,067, то допустимая относительная погрешность настройки
δ = 0,067/3440*tg18 = 0,00006
Наоборот, зная относительную погрешность взятого передаточного отношения, можно по формуле (3) определить допущенную погрешность в угле винтовой линии в минутах. При установлении допустимой относительной погрешности можно в подобных случаях пользоваться тригонометрическими таблицами. Так, в формуле (2) передаточное отношение пропорционально sin β. По тригонометрическим таблицам для взятого числового примера видно, что sin 18° = 0,30902, а разность синусов на 1′ составляет 0,00028. Следовательно, относительная погрешность на 1′ составляет 0,00028 : 0,30902 = 0,0009. Допустимое отклонение винтовой линии — 0,067, поэтому допустимая погрешность передаточного отношения 0,0009*0,067 = 0,00006, такая же, как и при расчете по формуле (3). Когда оба сопряженных колеса нарезаются на одном станке и по одной настройке цепи дифференциала, то погрешности в направлении линий зубьев допускаются значительно большие, так как у обоих колес отклонения одинаковы и незначительно влияют только на боковой зазор при зацеплении сопряженных колес.
Настройка цепи обкатки при обработке конических колес.
В этом случае формулы настройки выглядят так:
i = p*sinφ/z*cosу или i = z/p*sinφ
где z — число зубьев заготовки;
р — постоянная цепи обкатки;
φ — угол начального конуса;
у — угол ножки зуба.
Пропорциональным передаточному отношению оказывается радиус основной окружности. Исходя из этого, можно установить допустимую относительную погрешность настройки
где α — угол зацепления;
Δα — допустимое отклонение угла зацепления в минутах.
Настройка при обработке винтовых изделий.
δ = Δt/t или δ = ΔL/1000
где Δt — отклонение в шаге винта за счет настройки;
ΔL — накопленная погрешность в мм на 1000 мм длины резьбы.
Величина Δt дает абсолютную ошибку шага, а величина ΔL характеризует по существу относительную погрешность.
Настройка с учетом деформации винтов после обработки.
При нарезании метчиков с учетом усадки стали после последующей термической обработки или с учетом деформации винта вследствие нагревания при механической обработке, процент усадки или расширения непосредственно указывает на необходимое относительное отклонение в передаточном отношении сравнительно с тем, какое получилось бы без учета этих факторов. В этом случае относительное отклонение передаточного отношения в плюс или минус является уже не ошибкой, а преднамеренным отклонением.
Настройка делительных цепей. Типичная формула настройки
z — число зубьев или других делений на один оборот заготовки.
Нормальный комплект из 35 колес обеспечивает абсолютно точную настройку до 100 делений, так как в числах зубьев колес содержатся все простые множители до 100. В такой настройке погрешность вообще недопустима, так как она равна:
где Δl — отклонение линии зуба на ширине заготовки В в мм;
пD — длина начальной окружности или соответствующей другой окружности изделия в мм;
s — подача вдоль оси заготовки на один ее оборот в мм.
Только в грубых случаях эта погрешность может не играть роли.
Настройка зубофрезерных станков при отсутствии требуемых множителей в числах зубьев сменных колес.
В таких случаях (например, при z = 127) можно настроить гитару деления приближенно на дробное число зубьев, а необходимую поправку произвести, используя дифференциал [5]. Обычно формулы настройки гитар деления, подач и дифференциала выглядят так:
x = pa/z ; y = ks ; φ = c*sinβ/ma
Здесь р, k, с — соответственно постоянные коэффициенты этих цепей; а — число заходов фрезы (обычно а = 1).
Настраиваем указанные гитары согласно формулам
x = paA/Az+-1 ; y = ks ; φ’ = пc/asA
где z — число зубьев обрабатываемого колеса;
А — произвольное целое число, выбираемое так, чтобы числитель и знаменатель передаточного отношения разлагались на множители, подходящие для подбора сменных колес.
Знак (+) или (—) также выбирается произвольно, что облегчает разложение на множители. При работе правой фрезой, если выбран знак (+), промежуточные колеса на гитарах ставятся так, как это делают согласно руководству по работе на данном станке для правовинтовой заготовки; если выбран знак (—), промежуточные колеса ставят, как для левовинтовой заготовки; при работе левой фрезой — наоборот.
Желательно выбирать А в пределах
(1/2)*(пc/as) b+(20. 25); b + d > с+(20. 25) (11)
Эти условия ставятся для предотвращения упора сменных колес в соответствующие валы или детали крепления; числовое слагаемое зависит от конструкции данной гитары. Однако вторая из комбинаций (10) может быть принята только в том случае, когда колесо Z2 устанавливается на первом ведущем валу и если передача z2/z3 замедляющая или не содержит большого ускорения. Желательно, чтобы z2/z3 1) желательно так разбивать i = i1i2 чтобы сомножители были возможно более близкими один к другому и равномернее распределялось повышение скорости. При этом лучше, если i1 > i2
МИНИМАЛЬНЫЕ КОМПЛЕКТЫ СМЕННЫХ КОЛЕС
Состав комплектов сменных колес в зависимости от области применения приведен в табл. 2. В случае особо точных настроек — см. стр. 403.
Числа зубьев минимальных комплектов сменных колес для различных случаев настроек
Для настройки делительных головок можно использовать таблицы, прилагаемые заводом. Сложнее, но можно выбирать подходящие пятковые комбинации из приводимых в данной книге «Основных таблиц для подбора зубчатых колес».
Как узнать модуль зубчатого колеса?
При поломке зубчатого колеса или шестерни в редукторе какого-либо механизма или машины возникает необходимость по «старой» детали, а иногда по фрагментам обломков создать чертеж для изготовления нового колеса и/или шестерни. Эта статья будет полезна тем.
. кому приходится восстанавливать зубчатые передачи при отсутствии рабочих чертежей на вышедшие из строя детали.
«Вооружаемся» штангенциркулем, угломером или хотя бы транспортиром, линейкой и программой MS Excel, которая поможет быстро выполнять рутинные и порой непростые расчеты, и начинаем работу.
Как обычно раскрывать тему я буду на примерах, в качестве которых рассмотрим сначала цилиндрическую прямозубую передачу с наружным зацеплением, а затем косозубую.
Расчетам зубчатых передач на этом сайте посвящено несколько статей: «Расчет зубчатой передачи», «Расчет геометрии зубчатой передачи», «Расчет длины общей нормали зубчатого колеса». В них приведены рисунки с обозначениями параметров, используемых в данной статье. Эта статья продолжает тему и призвана раскрыть алгоритм действий при ремонтно-восстановительных работах, то есть работах, обратных проектировочным.
Расчеты можно выполнить в программе MS Excel или в программе OOo Calc из пакета Open Office.
О правилах форматирования ячеек листа Excel, которые применены в статьях этого блога, можно прочитать на странице « О блоге ».
Расчет параметров колеса и шестерни прямозубой передачи.
Изначально полагаем, что зубчатое колесо и шестерня имеют эвольвентные профили зубьев и изготавливались с параметрами исходного контура по ГОСТ 13755-81. Этот ГОСТ регламентирует три главных (для нашей задачи) параметра исходного контура для модулей больше 1 мм. (Для модулей меньше 1 мм исходный контур задается в ГОСТ 9587-81; модули меньше 1 мм рекомендуется применять только в кинематических, то есть не силовых передачах.)
Для правильного расчета параметров зубчатой передачи необходимы замеры и шестерни и колеса!
Исходные данные и замеры:
Начинаем заполнение таблицы в Excel с параметров исходного контура.
1. Угол профиля исходного контура α в градусах записываем
2. Коэффициент высоты головки зуба ha* вводим
3. Коэффициент радиального зазора передачи c* заносим
В СССР и в России 90% зубчатых передач в общем машиностроении изготавливались именно с такими параметрами, что позволяло применять унифицированный зубонарезной инструмент. Конечно, изготавливались передачи с зацеплением Новикова и в автомобилестроении применялись специальные исходные контуры, но все же большинство передач проектировалось и изготавливалось именно с контуром по ГОСТ13755-81.
4. Тип зубьев колеса (тип зацепления) T записываем
T =1 – при наружных зубьях у колеса
T =-1 – при внутренних зубьях у колеса (передача с внутренним зацеплением)
5. Межосевое расстояние передачи a w в мм измеряем по корпусу редуктора и заносим значение
Ряд межосевых расстояний зубчатых передач стандартизован. Можно сравнить измеренное значение со значениями из ряда, который приведен в примечании к ячейке C7. Совпадение не обязательно, но высоковероятно.
Обращаю внимание: углы наклона зубьев βa1 и βa2 – это углы, измеренные на цилиндрических поверхностях вершин зубьев.
Измеряем диаметры, по возможности, максимально точно! Для колес с четным числом зубьев сделать это проще, если вершины не замяты. Для колес с нечетным числом зубьев при замере помним, что размеры, которые показывает штангенциркуль несколько меньше реальных диаметров выступов. Делаем несколько замеров и наиболее с нашей точки зрения достоверные значения записываем в таблицу.
Результаты расчетов:
14. Предварительные значения м одуля зацепления определяем по результатам замеров шестерни m1 и зубчатого колеса m2 в мм соответственно
в ячейке D17: =D9/(D8/COS (D20/180*ПИ())+2*D4) =2,089
и в ячейке D18: =D13/(D12/COS (D21/180*ПИ())+2*D4) =2,005
Модуль зубчатого колеса играет роль универсального масштабного коэффициента, определяющего как габариты зубьев, так и общие габариты колеса и шестерни.
Сравниваем полученные значения со значениями из стандартного ряда модулей, фрагмент которого приведен в примечании к ячейке C19.
Полученные расчетные значения, как правило, очень близки к одному из значений стандартного ряда. Делаем предположение, что искомый модуль зубчатого колеса и шестерни m в мм равен одному из этих значений и вписываем его
15. Предварительные значения у гла наклона зубьев определяем по результатам замеров шестерни β 1 и зубчатого колеса β 2 в градусах соответственно
в ячейке D20: =ASIN (D8*D19/D9*TAN (D11/180*ПИ())) =0,0000
и в ячейке D21: =ASIN (D12*D19/D13*TAN (D15/180*ПИ())) =0,0000
Делаем предположение, что искомый угол наклона зубьев β в градусах равен измеренным и пересчитанным значениям и записываем
в ячейку D22: 0,0000
16. Предварительные значения коэффициента уравнительного смещения вычисляем по результатам замеров шестерни Δy 1 и зубчатого колеса Δy2 соответственно
в ячейке D23: =2*D4+D5- (D9-D10)/(2*D19) =0,025
и в ячейке D24: =2*D4+D5- (D13-D14)/(2*D19) = 0,025
Анализируем полученные расчетные значения, и принятое решение о значении коэффициента уравнительного смещения Δy записываем
17,18. Делительные диаметры шестерни d1 и зубчатого колеса d2 в мм рассчитываем соответственно
в ячейке D26: =D19*D8/COS (D22/180*ПИ()) =32,000
и в ячейке D27: =D19*D12/COS (D22/180*ПИ()) =126,000
19. Делительное межосевое расстояние a в мм вычисляем
в ячейке D28: =(D27+D6*D26)/2 =79,000
20. Угол профиля αt в градусах рассчитываем
в ячейке D29: =ATAN (TAN (D3/180*ПИ())/COS (D22/180*ПИ()))/ПИ()*180 =20,0000
21. Угол зацепления αtw в градусах вычисляем
в ячейке D30: =ACOS (D28*COS (D29/180*ПИ())/D7)/ПИ()*180 =21,8831
22,23. Коэффициенты смещения шестерни x1 и колеса x2 определяем соответственно
24,25. Коэффициент суммы (разности) смещений xΣ(d) вычисляем для проверки правильности предыдущих расчетов по двум формулам соответственно
в ячейке D33: =D31+D6*D32 =0,525
и в ячейке D34: =(D12+D6*D8)*((TAN (D30/180*ПИ()) — (D30/180*ПИ())) — (TAN (D29/180*ПИ()) — (D29/180*ПИ())))/(2*TAN (D3/180*ПИ())) =0,523
Значения, рассчитанные по разным формулам, отличаются очень незначительно! Полагаем, что найденные значения модуля зубчатого колеса и шестерни, а также коэффициентов смещения определены верно!
Расчет параметров колеса и шестерни косозубой передачи.
Переходим к примеру с косозубой передачей и повторяем все действия, которые мы делали в предыдущем разделе.
Измерить угол наклона зубьев с необходимой точностью при помощи угломера или транспортира практически очень сложно. Я обычно прокатывал колесо и шестерню по листу бумаги и затем по отпечаткам транспортиром делительной головки кульмана производил предварительные измерения с точностью в градус или больше. В представленном ниже примере я намерил: βa1 =19° и βa2 =17,5°.
Еще раз обращаю внимание, что углы наклона зубьев на цилиндре вершин βa1 и βa2 – это не угол β , участвующий во всех основных расчетах передачи. Угол β – это угол наклона зубьев на цилиндре делительного диаметра (для передачи без смещения).
Ввиду малости значений рассчитанных коэффициентов смещения уместно предположить, что передача была выполнена без смещения производящих контуров шестерни и зубчатого колеса.
Воспользуемся сервисом Excel «Подбор параметра». Подробно и с картинками об этом сервисе я в свое время написал здесь.
Выбираем в главном меню Excel «Сервис» — «Подбор параметра» и в выпавшем окне заполняем:
Передача, скорее всего, была выполнена без смещения, модуль зубчатого колеса и шестерни, а также угол наклона зубьев мы определили, можно делать чертежи!
Важные замечания.
Смещение исходного контура при нарезке зубьев применяют для восстановления изношенных поверхностей зубьев колеса, уменьшения глубины врезания на валах-шестернях, для увеличения нагрузочной способности зубчатой передачи, для выполнения передачи с заданным межосевым расстоянием не равным делительному расстоянию, для устранения подрезания ножек зубьев шестерни и головок зубьев колеса с внутренними зубьями.
Смещение производящего контура на практике применяют обычно при изготовлении прямозубых колес и очень редко косозубых. Это обусловлено тем, что по изгибной прочности косой зуб прочнее прямого, а необходимое межосевое расстояние можно обеспечить соответствующим углом наклона зубьев. Если высотную коррекцию изредка применяют для косозубых передач, то угловую практически никогда.
Косозубая передача работает более плавно и бесшумно, чем прямозубая. Как уже было сказано, косые зубья имеют более высокую прочность на изгиб и заданное межосевое расстояние можно обеспечить углом наклона зубьев и не прибегать к смещению производящего контура. Однако в передачах с косыми зубьями появляются дополнительные осевые нагрузки на подшипники валов, а диаметры колес имеют больший размер, чем прямозубые при том же числе зубьев и модуле. Косозубые колеса менее технологичны в изготовлении, особенно колеса с внутренними зубьями.
Подписывайтесь на анонсы статей в окнах, расположенных в конце каждой статьи или вверху каждой страницы.
Не забывайте подтверждать подписку кликом по ссылке в письме, которое тут же придет к вам на указанную почту (может прийти в папку «Спам»).
Уважаемые читатели! Ваш опыт и мнение, «оставленные» ниже в комментариях к статье, будут интересны и полезны коллегам и автору.
Ссылка на скачивание файла: modul-zubchatogo-kolesa (xls 41,0KB).
Статьи с близкой тематикой
Отзывы
23 комментария на «Как узнать модуль зубчатого колеса?»
Всегда возникают определённые трудности при вычислении модуля а особенно угла наклона зуба, если зубья почти отсутствуют. Спасибо.
Так ведь можно шаг разделить на пи и получим модуль.
А как его (шаг) измерить на делительном диаметре? На реальном колесе он (диаметр) не нарисован и при сильной коррекции вообще иногда находится вне тела детали. Да статья не только о модуле и не столько о модуле. Кто восстанавливал чертежи по обломкам косозубых сильно коррегированных колес меня поймет.
Юрий, напишите внутренние диаметры колеса и шестерни. И все замеры желательно сделать с точностью 0,1мм.
Файл с решением задачи отправлен на Ваш e-mail.
ну не совсем эта таблица поможет. а если не все данные можно замерить. если зубья схавало и пойми какие они были норомальные или с коррекцией, с одной муфтой очень долго мучался колличество зубьев известно сопригаемой шестерни тоже это был панетарный редуктор, долго голову ломал в расчетах типо все работае на практике нет. пришлось методо проб ишибок изготовить три разные муфты, в итоге оказалось что визуально не отлечишь какой зуб редуктор был германский и технология хер пойми какая применялась для нарезания зуба у меньшил количество зуба на 1 и все завелось но несчиталось при этом по нашим гостам. особо не обольщайтесь может такое случится с каждым.
Если разбить в хлам валы, шестерни, корпус и потом все переплавить для верности, то представленная в статье программа точно не поможет. Обольщаться не буду, обещаю. Чего только не может случиться с каждым. 🙂
Ребят, ну понятно, что это не универсальная программа. И что буржуи выжимают из железа по максимуму. И что достигается это в том числе глубокой коррекцией.
А автору большой такой респект за культивацию знаний и освежение памяти старым техническим кадрам, к которым я себя то же причисляю.
Здравствуйте. Классная статья. Спасибо за труды. Прочитав статью возник вопрос. Я работаю на ЧПУ станке, самоучкой. И для изучения параметрического программирования пытаюсь сделать универсальную программу для велосипедных звезд. Все получается, кроме радиуса от кривой впадины к вершине зуба. От диаметра звезды меняется профиль зуба. Помогите, если сможете. Есть ли формула по которой это рассчитывается. Коллеги на работе говорят, что подобное уже кто-то делал, но программа и все записи утеряны, а тот кто писал программу уже не работает. И там все сводилось к изменению одного коэффициента.
Здравствуйте, Руслан. У меня в планах есть эта тема.
А пока могу только отослать к ГОСТ 591-69 (в ред. 1989г.)/есть формулы для построения ПРАВИЛЬНОГО профиля зубьев звездочек и во 2-ом томе справочника Анурьева/. Искомая Вами кривая — это дуги окружности.
Здравствуйте! Интересная статья, то же с удовольствием освежил память. Хотелось бы почитать про расчёт питчевой косозубой шестерни. Есть у Вас такие наработки?
Добрый день, Николай. Расчет питчевых зубчатых передач ничем особенным не отличается от модульных. Эвольвента она и есть эвольвента. Нормальный исходный контур может иметь другие параметры, например, угол может быть не 20 градусов. Это означает, что инструмент придется заказывать или изготавливать не стандартный. Ну и модуль будет не из стандартного ряда и не «круглым» числом. Для автоматизированного расчета геометрии зубчатой передачи в Excel это никакого значения не имеет.
Извините, но Ваш файл не открывается. В чем может быть причина?
С уважением Анатолий.
Проверил. Всё открывается.
Может у Вас нет программы Excel на компьютере? Попробуйте открыть бесплатной программой Calc из OpenOffice или из LibreOffice (я попробовал — открывается корректно и даже с сохранением форматирования).
Здравствуйте, Александр! Присоединяюсь к числу благодарных читателей! Есть небольшой опыт в проектировании простых прямозубых п-ч. Помогите, как именно высчитать утерянную шестерню (редуктор ГДР). есть межосевое 34,5мм,колесо da=61,2мм, 70зуб., модуль,вроде,1 и угол наклона зуба 18,5градусов.
Здравствуйте, Александр! Помогите,пожалуйста, с решением проблемы! Утеряна шестерня. Есть: межосевое 34,5мм. Колесо: da=61,2мм, 70зуб.,модуль,вроде,1мм, угол наклона зубьев 18,5. Редуктор ГДР.
Для решения вашей проблемы нужно знать:
1. Какой диаметр впадин (желательно измерить на микроскопе до 0.1 мм)?
2. Наружный — тоже по-точнее.
3. Угол наклона зубьев на окружности выступов. Угол наклона как измеряли? Расчетный — тот на делительном диаметре.
Углом и/или смещением контура всегда можно «вогнать» передачу в заданное межосевое расстояние.
Здравствуйте! В п.15, при расчете угла наклона,в формуле у Вас почему-то используется arcsin, по-моему должен быть arctg?
Почему, Сабир, Вы решили, что должен быть arctg?
Сам я эту формулу не выводил и не проверял, но в справочниках — arcsin. Например здесь: Справочник механика машиностроительного завода, том 1, стр.330.
ГОСТ 16532-70 Передачи зубчатые цилиндрические эвольвентные внешнего зацепления. Расчет геометрии. См. формулу в пункте 8 на стр.6. Я подумал как то так должно быть. В любом случае по вашим формулам у меня что то не бьется))) там какая то запара с радианами
Сабир, вышлите через страницу «Обратная связь» или напишите здесь данные замеров ваших колеса и шестерни.
С радианами никакой «запары» нет. Погрешность многократных прямых и обратных тригонометрических вычислений, конечно, иногда проявляется в Excel.
С формулой не всё однозначно. В ГОСТе действительно arctg, в справочнике — arcsin. Ошибка может быть и там, и там. С arcsin я многократно успешно на практике использовал изложенный алгоритм. Конечно, при малых значениях угла arcsin (а)≈arctg (a), и в диапазоне углов наклона зубьев до 20° отличие arcsin от arctg не превышает 6%. На не особо точных передачах это различие можно и не заметить и не почувствовать.
Склоняюсь к тому, что Вы правы — должен быть arctg. Хочу проверить замерами и расчетами на реальном колесе, но в данный момент такой возможности нет, поэтому и прошу Вас прислать ваши данные.
Есть пара вопросов. Интересно Ваше мнение.
В предложенном расчете сначала считается
Δy через измеряемые величины da,df и коэф-ты ha*, c*,
а затем уже х, используя расчетный Δy и замеренный da.
Естественно, что нужно знать также d, для которого нужны m,z,угол B.
1. Задумываясь о максимальной точности расчета, вероятно, предпочтительнее было бы сразу посчитать х, измерив df и зная d, из формулы ГОСТа для расчета df:
df = d — 2*(ha*+c*-x) m, чтобы не вводить погрешность от измеренного da в расчет. Как вы считаете?
2. Хотя, даже для исходного контура крупномодульных колес, значение с* по ГОСТу может варьироваться в отдельных случаях, до 0.4, не говоря уже о мелкомодульных колесах, где при разном типе впадины может меняться с* и ha* — до 1,1.
Конечно, это все малая погрешность, но получается, что не зная межосевого расстояния (иногда такое встречалось) вычислить с абсолютной точностью х не получится.
Может, я и ошибаюсь. Что вы думаете?
df, как Вы справедливо отметили, величина для обратных пересчетов абсолютно не надежная. Поэтому я предпочел в первую очередь «посмотреть в расчете» на коэффициент уравнительного смещения.
Не зная межосевое расстояние очень сложно точно восстановить передачу с коррегированными профилями, практически невозможно.