ΠΊΠ°ΠΊ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ Π² Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ
ΠΠ°ΠΊ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ Π² Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ
Β§ 12. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
1. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π² Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΠ΅.
ΠΠ½Π°Π΅ΠΌ, ΡΡΠΎ ΠΎΠ΄Π½Π° ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΡΡ Π·Π°Π΄Π°Ρ ΠΌΠ΅Ρ Π°Π½ΠΈΠΊΠΈ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠΎΡΠΊΠΈ Π² Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΠ½Π°Π΅ΠΌ, ΡΡΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠΎΡΠΊΠΈ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΎ ΡΠ°Π΄ΠΈΡΡ-Π²Π΅ΠΊΡΠΎΡΠΎΠΌ, ΠΈ Π² Π»ΡΠ±ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΉ ΡΠ°Π΄ΠΈΡΡ-Π²Π΅ΠΊΡΠΎΡ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:




2. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π² ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΠ΅.
ΠΠ½Π°Π΅ΠΌ, ΡΡΠΎ Π²Π΅ΠΊΡΠΎΡΡ Π½Π°Ρ ΠΎΠ΄ΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΉ Π½Π° ΠΎΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΠΎΡΡΠΎΠΌΡ ΠΎΡ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΉΠ΄ΡΠΌ ΠΊ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΌ Π²Π΅ΠΊΡΠΎΡΠ½ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½ Π½Π° ΠΎΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΡΠ»ΠΈ 
.
ΠΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΠ°Π΄ΠΈΡΡΠΎΠ² ΡΠ°Π²Π½Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌ. ΠΠΎΡΡΠΎΠΌΡ:
.
ΠΡΠ»ΠΈ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΡ ΠΈΠ·Π²Π΅ΡΡΠ½Π°, ΡΠΎ ΠΌΡ ΡΠΎΠ²ΠΌΠ΅ΡΠ°Π΅ΠΌ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΡ Ρ ΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ OX ΠΈ ΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ Π²ΠΌΠ΅ΡΡΠΎ ΡΡΡΡ Π²ΡΠ΅Π³ΠΎ ΠΎΠ΄Π½ΠΈΠΌ ΠΏΠ΅ΡΠ²ΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ.
ΠΠΈΠΊΠ°ΠΊΡΡ ΡΠ°ΡΡΡ ΡΡΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° Π½ΠΈ Π² ΠΊΠ°ΠΊΠΈΡ ΡΠ΅Π»ΡΡ , Π²ΠΊΠ»ΡΡΠ°Ρ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΈ Π½Π°ΡΡΠ½ΡΠ΅, Π½Π΅Π»ΡΠ·Ρ Π±Π΅Π· ΠΏΠΈΡΡΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΡ Π²Π»Π°Π΄Π΅Π»ΡΡΠ° Π°Π²ΡΠΎΡΡΠΊΠΈΡ ΠΏΡΠ°Π² Π΄ΡΠ±Π»ΠΈΡΠΎΠ²Π°ΡΡ Π² ΡΠ΅ΡΠΈ ΠΠ½ΡΠ΅ΡΠ½Π΅Ρ ΠΈ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡ Π² ΠΊΠ°ΠΊΠΎΠΉ Π±Ρ ΡΠΎ Π½ΠΈ Π±ΡΠ»ΠΎ ΡΠΎΡΠΌΠ΅ ΠΈ ΠΊΠ°ΠΊΠΈΠΌΠΈ Π±Ρ ΡΠΎ Π½ΠΈ Π±ΡΠ»ΠΎ ΡΡΠ΅Π΄ΡΡΠ²Π°ΠΌΠΈ, Π±ΡΠ΄Ρ ΡΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠ΅ ΠΈΠ»ΠΈ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅, Π²ΠΊΠ»ΡΡΠ°Ρ Π·Π°ΠΏΠΈΡΡ Π½Π° ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΉ ΠΈΠ»ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠΉ Π½ΠΎΡΠΈΡΠ΅Π»Ρ, Π²ΡΠ²ΠΎΠ΄ Π½Π° ΠΏΠ΅ΡΠ°ΡΡ, ΡΠΎΡΠΎΠΊΠΎΠΏΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅.
Π€ΠΈΠ·ΠΈΠΊΠ°. 10 ΠΊΠ»Π°ΡΡ
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ
ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ
ΠΡΠ½ΠΎΠ²Π½Π°Ρ Π·Π°Π΄Π°ΡΠ° ΠΌΠ΅Ρ Π°Π½ΠΈΠΊΠΈ β ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ Π² Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³ΠΈΡ ΡΠ΅Π» Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΠ°ΠΊΠΎΠ½ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ: Ρ Π°ΡΠ°ΠΊΡΠ΅Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΡΠΎΠ³ΠΎ, ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΊΠ°ΠΊΠΈΡ ΡΠ΅Π» ΠΌΡ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.
ΠΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ° β ΡΠ΅Π»ΠΎ, ΡΠ°Π·ΠΌΠ΅ΡΠ°ΠΌΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π² ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π½Π΅Π±ΡΠ΅ΡΡ.
Π’Π΅Π»ΠΎ, ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, β ΡΠ΅Π»ΠΎ ΠΎΡΡΡΡΡΠ°.
Π‘ΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΡ ΡΠ΅Π»Π° ΠΎΡΡΡΡΡΠ°, ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠΉ Ρ Π½ΠΈΠΌ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΈ ΡΠ°ΡΠΎΠ² Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ ΠΎΡΡΡΡΡΠ°.
Π’ΡΠ°Π΅ΠΊΡΠΎΡΠΈΡ β Π»ΠΈΠ½ΠΈΡ, Π²Π΄ΠΎΠ»Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ Π΄Π²ΠΈΠ³Π°Π»ΠΎΡΡ ΡΠ΅Π»ΠΎ.
ΠΠ»ΠΈΠ½Ρ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΌ ΠΏΡΡΡΠΌ.
ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ΅Π»Π° (ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ) Π½Π°Π·ΡΠ²Π°ΡΡ Π²Π΅ΠΊΡΠΎΡ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΠΈΠΉ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° Ρ Π΅Π³ΠΎ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ.
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ Π·Π° Π»ΡΠ±ΡΠ΅ ΡΠ°Π²Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ΅Π»ΠΎ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΡΠ°Π²Π½ΡΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ.
Π‘ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΎΡΠΊΠΈ β Π²Π΅ΠΊΡΠΎΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΡΠ°Π²Π½Π°Ρ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΊ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΡΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·ΠΎΡΠ»ΠΎ.
ΠΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ β ΡΡΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π°, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΡΠΈ, ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ±ΠΎΡΠ° ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΡΡΡΡΠ°.
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ
ΠΠ· ΠΈΡΡΠΎΡΠΈΠΈ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
Π ΠΈΡΡΠΎΡΠΈΠΈ ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΡΠ²Π° Π±ΡΠ»ΠΈ ΠΈ Π΄ΡΠ°ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ»ΡΡΠ°ΠΈ, ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ Π²ΡΠ±ΠΎΡΠΎΠΌ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΡΡΠ΅ΡΠ°. ΠΠ°Π·Π½Ρ ΠΠΆΠΎΡΠ΄Π°Π½ΠΎ ΠΡΡΠ½ΠΎ, ΠΎΡΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΠ°Π»ΠΈΠ»Π΅ΠΎ ΠΠ°Π»ΠΈΠ»Π΅Ρ β Π²ΡΠ΅ ΡΡΠΎ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΡ Π±ΠΎΡΡΠ±Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΠΎΡΠΎΠ½Π½ΠΈΠΊΠ°ΠΌΠΈ Π³Π΅ΠΎΡΠ΅Π½ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΡΡΡΡΠ° ΠΈ Π³Π΅Π»ΠΈΠΎΡΠ΅Π½ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ ΠΎΡΡΡΡΡΠ°. Π‘Π»ΠΎΠΆΠ½ΠΎ Π±ΡΠ»ΠΎ ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΡΠ²Ρ ΠΏΡΠΈΠ²ΡΠΊΠ½ΡΡΡ ΠΊ ΠΌΡΡΠ»ΠΈ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΠΠ΅ΠΌΠ»Ρ Π²ΠΏΠΎΠ»Π½Π΅ ΠΎΠ±ΡΡΠ½Π°Ρ ΠΏΠ»Π°Π½Π΅ΡΠ°, Π° Π²ΠΎΠ²ΡΠ΅ Π½Π΅ ΡΠ΅Π½ΡΡ ΠΌΠΈΡΠΎΠ·Π΄Π°Π½ΠΈΡ. Π Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΠ΅ΠΌΠ»ΠΈ, Π½ΠΎ ΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π‘ΠΎΠ»Π½ΡΠ°, Π·Π²ΡΠ·Π΄ ΠΈΠ»ΠΈ Π»ΡΠ±ΡΡ Π΄ΡΡΠ³ΠΈΡ ΡΠ΅Π». ΠΠ°ΠΌΠ½ΠΎΠ³ΠΎ ΡΠ΄ΠΎΠ±Π½Π΅Π΅ ΠΈ ΠΏΡΠΎΡΠ΅ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½Π΅Π±Π΅ΡΠ½ΡΡ ΡΠ΅Π» Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΎΡΡΡΡΡΠ°, ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠΉ Ρ Π‘ΠΎΠ»Π½ΡΠ΅ΠΌ, ΡΡΠΎ ΡΠ±Π΅Π΄ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΡΠ½Π°ΡΠ°Π»Π° ΠΠ΅ΠΏΠ»Π΅Ρ, Π° ΠΏΠΎΡΠΎΠΌ ΠΈ ΠΡΡΡΠΎΠ½. Π‘Π²ΠΎΠΉ Π·Π½Π°ΠΌΠ΅Π½ΠΈΡΡΠΉ Π·Π°ΠΊΠΎΠ½ Π²ΡΠ΅ΠΌΠΈΡΠ½ΠΎΠ³ΠΎ ΡΡΠ³ΠΎΡΠ΅Π½ΠΈΡ ΠΡΡΡΠΎΠ½ Π²ΡΠ²Π΅Π» Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΡΠ½Ρ Π²ΠΎΠΊΡΡΠ³ ΠΠ΅ΠΌΠ»ΠΈ.
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
ΠΏ.1. ΠΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ
Π‘ΠΈΡΡΠ΅ΠΌΠ° ΠΎΡΡΡΠ΅ΡΠ°, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°ΡΡ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ·:
1) ΡΠ΅Π»Π° ΠΎΡΡΡΠ΅ΡΠ°; 2) ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ; 3) ΡΠ°ΡΠΎΠ² Π΄Π»Ρ ΠΎΡΡΡΠ΅ΡΠ° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΡΡΡΡ ΡΠ΅Π»ΠΎΠΌ ΠΎΡΡΡΠ΅ΡΠ° Π±ΡΠ΄Π΅Ρ Π΄ΠΎΠΌ.
Π Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΌΠ°ΡΠΈΠ½Π° ΡΡΠΎΠΈΡ Π² 20 ΠΌ ΡΠΏΡΠ°Π²Π° ΠΎΡ Π΄ΠΎΠΌΠ°.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ°ΡΠΈΠ½Ρ ΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡΡ 10 ΠΌ/Ρ Π²ΠΏΡΠ°Π²ΠΎ.
ΠΠ°ΠΏΡΠ°Π²ΠΈΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΠΏΡΡΠΌΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²Π΅ΠΊΡΠΎΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ, Π²ΠΏΡΠ°Π²ΠΎ.
Π‘ΠΎΡΡΠ°Π²ΠΈΠΌ ΡΠ°Π±Π»ΠΈΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ Π·Π° ΠΏΠ΅ΡΠ²ΡΠ΅ 4 ΡΠ΅ΠΊΡΠ½Π΄Ρ:
Π‘ΡΠ°ΡΡΡΡ Ρ ΡΠΎΡΠΊΠΈ x0=20, ΠΌΠ°ΡΠΈΠ½Π° ΠΊΠ°ΠΆΠ΄ΡΡ ΡΠ΅ΠΊΡΠ½Π΄Ρ ΡΠ΄Π°Π»ΡΠ΅ΡΡΡ ΠΎΡ Π΄ΠΎΠΌΠ° Π΅ΡΠ΅ Π½Π° 10 ΠΌ.
ΠΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ ΠΏΡΡΡ Π·Π° 2 ΡΠ΅ΠΊΡΠ½Π΄Ρ β 10Β·2=20 ΠΌ, Π·Π° 3 ΡΠ΅ΠΊΡΠ½Π΄Ρ β 10Β·3=30 ΠΌ, Π·Π° t ΡΠ΅ΠΊΡΠ½Π΄ s=vt ΠΌΠ΅ΡΡΠΎΠ². ΠΠ½Π°ΡΠΈΡ, Π΄Π»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t ΠΌΠΎΠΆΠ΅ΠΌ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ x Π² Π²ΠΈΠ΄Π΅: \begin
ΠΡΠ»ΠΈ ΠΏΡΠΈ ΡΠ΅Ρ ΠΆΠ΅ Π½Π°ΡΠ°Π»ΡΠ½ΡΡ ΡΡΠ»ΠΎΠ²ΠΈΡΡ ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ ΠΌΠ°ΡΠΈΠ½Π° Π±ΡΠ΄Π΅Ρ Π΄Π²ΠΈΠ³Π°ΡΡΡΡ Π²Π»Π΅Π²ΠΎ, ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΠ°Π±Π»ΠΈΡΡ:
Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° x Π² Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄: \begin
ΠΏ.2. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π² ΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠ΅ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
ΠΡΠ»ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΠΎ ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΡΠ΅ΡΠΈΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ Π·Π°Π΄Π°ΡΡ ΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠΈ.
ΠΏ.3. Π£Π΄ΠΎΠ±Π½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΎΡΡΡΠ΅ΡΠ° Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°ΡΠΈ ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ
ΠΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°ΡΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠ±ΡΠ°ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΡΠ΅Π»Π° ΠΎΡΡΡΠ΅ΡΠ° ΠΈ ΡΠ²ΡΠ·Π°ΡΡ Ρ Π½ΠΈΠΌΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π½Π΅ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΎΡΡΡΠ΅ΡΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ΄ΠΎΠ±Π½ΠΎΠΉ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ Π² ΡΠΎΠΌ ΡΠΌΡΡΠ»Π΅, ΡΡΠΎ Π² Π½Π΅ΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΠΈ ΡΠ΅ΡΠ°Π΅ΡΡΡ ΠΏΡΠΎΡΠ΅, ΡΠ΅ΠΌ Π² Π΄ΡΡΠ³ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΠ°Ρ .
ΠΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ Π½Π° ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»ΠΎΠΌ ΠΎΡΡΡΠ΅ΡΠ° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Π°Ρ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΡ (Π·Π΅ΠΌΠ»Ρ, ΠΏΠΎΠ», ΡΡΠΎΠ» ΠΈ Ρ.ΠΏ.), ΡΠ°ΠΌΠΎ Π΄Π²ΠΈΠΆΡΡΠ΅Π΅ΡΡ ΡΠ΅Π»ΠΎ ΠΈΠ»ΠΈ Π΄ΡΡΠ³ΠΎΠ΅ ΡΠ΅Π»ΠΎ.
ΠΡΠΈ ΡΡΠΎΠΌ ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½Π°Ρ ΠΏΡΡΠΌΠ°Ρ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ (Π²Π΅ΠΊΡΠΎΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ) ΡΠ΅Π»Π°, ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΌΡ Ρ
ΠΎΡΠΈΠΌ ΠΏΠΎΠ»ΡΡΠΈΡΡ.
ΠΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΠΏΡΡΠΌΡΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ, ΡΠ°Π²Π½ΡΠΌΠΈ Π½ΡΠ»Ρ ΠΈΠ»ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ. ΠΠ΅Π»ΠΈΡΠΈΠ½Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π±ΡΠ΄ΡΡ ΡΠ°Π²Π½Ρ Π΄Π»ΠΈΠ½Π°ΠΌ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΉ.
ΠΏ.4. ΠΡΠ°ΡΠΈΠΊ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ x=x(t)
Π‘ΡΠ°Π²Π½ΠΈΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ \(x(t)=x_0+v_x t\) Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡΡΠΌΠΎΠΉ \(y(x)=kx+b\) (ΡΠΌ. Β§38 ΡΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊΠ° ΠΏΠΎ Π°Π»Π³Π΅Π±ΡΠ΅ Π΄Π»Ρ 7 ΠΊΠ»Π°ΡΡΠ°).
Π ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΎΠ»Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° \(k\) ΠΈΠ³ΡΠ°Π΅Ρ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ \(v_x\), Π° ΡΠΎΠ»Ρ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ»Π΅Π½Π° \(b\) β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° \(x_0\).
![]() | ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊΠΈ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π΄Π»Ρ Π½Π°ΡΠ΅Π³ΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠ°: |
ΠΏ.5. ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ?
ΠΏ.6. ΠΡΠ°ΡΠΈΠΊ ΡΠΊΠΎΡΠΎΡΡΠΈ vx=vx(t)
ΠΠ»Ρ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠ°:
ΠΏ.7. ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΡΡΡ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΡΠΊΠΎΡΠΎΡΡΠΈ?
ΠΡΠΎΠ΅ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ, ΡΠ°ΠΊ ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΈΠ»ΠΈ ΡΠ°Π²Π½ΠΎΠΉ 0.
ΠΏ.8. ΠΠ°Π΄Π°ΡΠΈ
ΠΠ°Π΄Π°ΡΠ° 1. Π‘ΠΏΠΎΡΡΡΠΌΠ΅Π½ Π±Π΅ΠΆΠΈΡ ΠΏΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌΡ ΡΡΠ°ΡΡΠΊΡ Π΄ΠΈΡΡΠ°Π½ΡΠΈΠΈ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ 8 ΠΌ/Ρ. ΠΡΠΈΠΌΠΈΡΠ΅ \(x_0=0\) ΠΈ Π·Π°ΠΏΠΈΡΠΈΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
Π°) ΠΠΎΡΡΡΠΎΠΉΡΠ΅ Π³ΡΠ°ΡΠΈΠΊ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ \(x=x(t)\) ΠΈ Π½Π°ΠΉΠ΄ΠΈΡΠ΅ Ρ Π΅Π³ΠΎ ΠΏΠΎΠΌΠΎΡΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΎΠ±Π΅ΠΆΠΈΡ ΡΠΏΠΎΡΡΡΠΌΠ΅Π½ Π·Π° \(t_1=5\ Ρ\), Π·Π° \(t_2=10\ Ρ\);
Π±) ΠΏΠΎΡΡΡΠΎΠΉΡΠ΅ Π³ΡΠ°ΡΠΈΠΊ ΡΠΊΠΎΡΠΎΡΡΠΈ \(v=v(t)\) ΠΈ Π½Π°ΠΉΠ΄ΠΈΡΠ΅ Ρ Π΅Π³ΠΎ ΠΏΠΎΠΌΠΎΡΡΡ, ΠΊΠ°ΠΊΠΎΠΉ ΠΏΡΡΡ ΠΏΡΠ΅ΠΎΠ΄ΠΎΠ»Π΅Π΅Ρ ΡΠΏΠΎΡΡΡΠΌΠ΅Π½ Π·Π° ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ \(\triangle t=t_2-t_1\)?
ΠΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡ \(x_0=0,\ v_x=8\).
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ: \(x=x_0+v_x t=0+8t=8t\)
Π°) Π‘ΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΡΠΌΠΎΠΉ \(x=8t\) ΠΏΠΎ Π΄Π²ΡΠΌ ΡΠΎΡΠΊΠ°ΠΌ:
ΠΠ°Π΄Π°ΡΠ° 2. ΠΠΎΡΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠΎΡΠ°Π±Π»Ρ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ.
ΠΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ ΡΠ΅ΡΠ΅Π· 1 ΡΠ°Ρ ΠΏΠΎΡΠ»Π΅ ΡΡΠ°ΡΡΠ° ΠΊΠΎΡΠ°Π±Π»Ρ Π½Π°Ρ
ΠΎΠ΄ΠΈΠ»ΡΡ Π½Π° ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠΈ 38 ΡΡΡ.ΠΊΠΌ ΠΎΡ Π°ΡΡΠ΅ΡΠΎΠΈΠ΄Π° ΠΠ΅ΡΡΠ°, Π° ΡΠ΅ΡΠ΅Π· 2 ΡΠ°ΡΠ° ΠΏΠΎΡΠ»Π΅ ΡΡΠ°ΡΡΠ° β Π½Π° ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠΈ 56 ΡΡΡ.ΠΊΠΌ.
Π°) ΠΏΠΎΡΡΡΠΎΠΉΡΠ΅ Π³ΡΠ°ΡΠΈΠΊ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΊΠΎΡΠ°Π±Π»Ρ, Π½Π°ΠΉΠ΄ΠΈΡΠ΅ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
Π±) Π½Π° ΠΊΠ°ΠΊΠΎΠΌ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠΈ ΠΎΡ Π°ΡΡΠ΅ΡΠΎΠΈΠ΄Π° Π½Π°Ρ
ΠΎΠ΄ΠΈΠ»ΡΡ ΠΊΠΎΡΠ°Π±Π»Ρ Π² Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ?
Π²) Π½Π° ΠΊΠ°ΠΊΠΎΠΌ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠΈ ΠΎΡ Π°ΡΡΠ΅ΡΠΎΠΈΠ΄Π° Π±ΡΠ΄Π΅Ρ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡΡ ΠΊΠΎΡΠ°Π±Π»Ρ ΡΠ΅ΡΠ΅Π· 4 ΡΠ°ΡΠ° ΠΏΠΎΡΠ»Π΅ ΡΡΠ°ΡΡΠ°?
Π³) ΡΠ΅ΠΌΡ ΡΠ°Π²Π½Π° ΡΠΊΠΎΡΠΎΡΡΡ ΠΊΠΎΡΠ°Π±Π»Ρ Π² ΠΊΠΈΠ»ΠΎΠΌΠ΅ΡΡΠ°Ρ
Π² ΡΠ΅ΠΊΡΠ½Π΄Ρ?
Π±) Π Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΊΠΎΡΠ°Π±Π»Ρ Π½Π°Ρ ΠΎΠ΄ΠΈΠ»ΡΡ Π½Π° ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠΈ \(x_0=20\) ΡΡΡ.ΠΊΠΌ ΠΎΡ Π°ΡΡΠ΅ΡΠΎΠΈΠ΄Π°.
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅
ΡΠ΅ΠΎΡΠΈΡ ΠΏΠΎ ΡΠΈΠ·ΠΈΠΊΠ΅ 🧲 ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΠΊΠ°
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠ΅Π»ΠΎ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ Π·Π° Π»ΡΠ±ΡΠ΅ ΡΠ°Π²Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°Π²Π½ΡΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ.
Π‘ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΈ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ
ΠΡΠ»ΠΈ ΡΠ΅Π»ΠΎ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎ ΠΈ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎ, Π΅Π³ΠΎ ΡΠΊΠΎΡΠΎΡΡΡ ΠΎΡΡΠ°Π΅ΡΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΠΊΠ°ΠΊ ΠΏΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ, ΡΠ°ΠΊ ΠΈ ΠΏΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ. Π£ΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈ ΡΡΠΎΠΌ ΡΠ°Π²Π½ΠΎ Π½ΡΠ»Ρ.
ΠΠ΅ΠΊΡΠΎΡΠ½ΡΠΉ ΡΠΏΠΎΡΠΎΠ± Π·Π°ΠΏΠΈΡΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ: 

ΠΡΠ½ΠΎΠ²Π½Π°Ρ Π΅Π΄ΠΈΠ½ΠΈΡΠ° ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ β 1 ΠΌΠ΅ΡΡ Π² ΡΠ΅ΠΊΡΠ½Π΄Ρ. Π‘ΠΎΠΊΡΠ°ΡΠ΅Π½Π½ΠΎ β 1 ΠΌ/Ρ.
Π‘ΠΏΠΈΠ΄ΠΎΠΌΠ΅ΡΡ β ΠΏΡΠΈΠ±ΠΎΡ Π΄Π»Ρ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΠΎΠ΄ΡΠ»ΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π°.
ΠΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΏΡΡΠΌΡΡ Π»ΠΈΠ½ΠΈΡ, ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΡΡ ΠΎΡΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΡΠ³Π»ΡΠ΄ΠΈΡ ΠΎΠ½ ΡΠ°ΠΊ:
Π§ΡΠΎΠ±Ρ ΡΡΠ°Π²Π½ΠΈΡΡ ΠΌΠΎΠ΄ΡΠ»ΠΈ ΡΠΊΠΎΡΠΎΡΡΠ΅ΠΉ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅, Π½ΡΠΆΠ½ΠΎ ΠΎΡΠ΅Π½ΠΈΡΡ ΠΈΡ ΡΠ΄Π°Π»Π΅Π½Π½ΠΎΡΡΡ ΠΎΡ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. Π§Π΅ΠΌ Π΄Π°Π»ΡΡΠ΅ Π³ΡΠ°ΡΠΈΠΊ ΠΎΡ ΠΎΡΠΈ, ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ ΠΌΠΎΠ΄ΡΠ»Ρ.
ΠΡΠΈΠΌΠ΅Ρ β1. ΠΠ°ΠΉΡΠΈ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ ΠΠ₯. ΠΡΡΠ°Π·ΠΈΡΡ ΡΠΊΠΎΡΠΎΡΡΡ Π² ΠΊΠΌ/Ρ.
ΠΡΠ°ΡΠΈΠΊ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ Π² ΡΠΎΡΠΊΠ΅ ΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ 10. ΠΠ΄ΠΈΠ½ΠΈΡΠ° ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ β ΠΌ/Ρ. ΠΠΎΡΡΠΎΠΌΡ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°Π²Π΅Π½ 10 ΠΌ/Ρ. ΠΡΠ°ΡΠΈΠΊ Π»Π΅ΠΆΠΈΡ Π²ΡΡΠ΅ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ ΡΠ΅Π»ΠΎ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΠΏΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎΡΠΈ ΠΠ₯. Π§ΡΠΎΠ±Ρ Π²ΡΡΠ°Π·ΠΈΡΡ ΡΠΊΠΎΡΠΎΡΡΡ Π² ΠΊΠΌ/Ρ, Π½ΡΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΡΠΈ 10 ΠΌ Π² ΠΊΠΈΠ»ΠΎΠΌΠ΅ΡΡΡ ΠΈ 1 Ρ Π² ΡΠ°ΡΡ:

ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΡΠΎΠΌ, ΡΡΠΎ Π΅Π³ΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠ°Π²Π΅Π½ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΡΠΈΠ³ΡΡΡ, ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΠΉ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ, ΠΎΡΡΠΌΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ Π»ΠΈΠ½ΠΈΠ΅ΠΉ, ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΡΠΈ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΡΠ° ΡΠΈΠ³ΡΡΠ° ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ. ΠΠΎΡΡΠΎΠΌΡ ΠΌΠΎΠ΄ΡΠ»Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π²ΡΡΠΈΡΠ»ΡΠ΅ΡΡΡ ΠΏΠΎ ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΌΡΠ»Π΅:


ΠΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΡΡΡ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ. ΠΠΎΡΡΠΎΠΌΡ ΠΏΡΡΡ, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ ΡΠ΅Π»ΠΎΠΌ, ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΠΎ ΡΡΠΈΠΌ ΠΆΠ΅ ΡΠΎΡΠΌΡΠ»Π°ΠΌ.
Π€ΠΎΡΠΌΡΠ»Π° ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ:
ΠΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ
ΠΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΡΠΎΠΉ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΡΠΈ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΎΠ½ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π»ΡΡ, ΠΈΡΡ ΠΎΠ΄ΡΡΠΈΠΉ ΠΈΠ· Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΡΠ³Π»ΡΠ΄ΠΈΡ ΠΎΠ½ ΡΠ°ΠΊ:
Π§ΡΠΎΠ±Ρ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠ°Π²Π½ΠΈΡΡ ΠΌΠΎΠ΄ΡΠ»ΠΈ ΡΠΊΠΎΡΠΎΡΡΠ΅ΠΉ, Π½ΡΠΆΠ½ΠΎ ΡΡΠ°Π²Π½ΠΈΡΡ ΡΠ³Π»Ρ ΠΈΡ Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊ ΠΎΡΠΈ sx.Π§Π΅ΠΌ ΠΌΠ΅Π½ΡΡΠ΅ ΡΠ³ΠΎΠ», ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ ΠΌΠΎΠ΄ΡΠ»Ρ. Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΠΈΡΡΠ½ΠΊΡ Π²ΡΡΠ΅, ΠΌΠΎΠ΄ΡΠ»ΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π», ΠΊΠΎΡΠΎΡΡΠΌ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ 1 ΠΈ 3, ΡΠ°Π²Π½Ρ. ΠΠ½ΠΈ ΠΏΡΠ΅Π²ΠΎΡΡ ΠΎΠ΄ΡΡ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° 2, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΈΡ ΡΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊ ΠΎΡΠΈ sx ΠΌΠ΅Π½ΡΡΠ΅.
ΠΡΠ°ΡΠΈΠΊ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ
ΠΡΠ°ΡΠΈΠΊ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π³ΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΡΠ³Π»ΡΠ΄ΠΈΡ ΠΎΠ½ ΡΠ°ΠΊ:
Π’Π°ΠΊ ΠΊΠ°ΠΊ Π³ΡΠ°ΡΠΈΠΊ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π³ΡΠ°ΡΠΈΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π²ΠΈΠ΄:
Π§ΡΠΎΠ±Ρ ΡΡΠ°Π²Π½ΠΈΡΡ ΠΌΠΎΠ΄ΡΠ»ΠΈ ΡΠΊΠΎΡΠΎΡΡΠ΅ΠΉ ΡΠ΅Π» ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ, Π½ΡΠΆΠ½ΠΎ ΡΡΠ°Π²Π½ΠΈΡΡ ΡΠ³Π»Ρ Π½Π°ΠΊΠ»ΠΎΠ½Π° Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊ ΠΎΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. Π§Π΅ΠΌ ΠΌΠ΅Π½ΡΡΠ΅ ΡΠ³ΠΎΠ», ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ. ΠΠ° ΠΊΠ°ΡΡΠΈΠ½ΠΊΠ΅ Π²ΡΡΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠΉ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π³ΡΠ°ΡΠΈΠΊΡ 1. Π£ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² 2 ΠΈ 3 ΠΌΠΎΠ΄ΡΠ»ΠΈ ΡΠ°Π²Π½Ρ.
Π§ΡΠΎΠ±Ρ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Π½Π°ΠΉΡΠΈ Π²ΡΠ΅ΠΌΡ Π²ΡΡΡΠ΅ΡΠΈ Π΄Π²ΡΡ ΡΠ΅Π», Π½ΡΠΆΠ½ΠΎ ΠΈΠ· ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡ ΠΊ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΡΠΈΠΌΠ΅Ρ β2. ΠΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
ΠΠ·ΡΡΠΈΡΠ΅ Π³ΡΠ°ΡΠΈΠΊ ΠΈ Π½Π° Π΅Π³ΠΎ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ Π²ΡΠ±Π΅ΡΠΈΡΠ΅ Π΄Π²Π° Π²Π΅ΡΠ½ΡΡ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΡ:
ΠΠ° ΡΡΠ°ΡΡΠΊΠ΅ 1 ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ°ΡΡΠ΅Ρ, ΠΈ Π΅Π΅ Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΏΡΡΠΌΡΡ. ΠΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ Π½Π° ΡΡΠΎΠΌ ΡΡΠ°ΡΡΠΊΠ΅ ΡΠ΅Π»ΠΎ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎ (Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ). ΠΠ° ΡΡΠ°ΡΡΠΊΠ΅ 2 ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π½Π΅ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ, ΡΡΠΎ Π³ΠΎΠ²ΠΎΡΠΈΡ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΡΠ΅Π»ΠΎ ΠΏΠΎΠΊΠΎΠΈΡΡΡ. ΠΡΡ ΠΎΠ΄Ρ ΠΈΠ· ΡΡΠΎΠ³ΠΎ, Π²Π΅ΡΠ½ΡΠΌΠΈ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΡΠΌΠΈ ΡΠ²Π»ΡΡΡΡΡ Π½ΠΎΠΌΠ΅ΡΠ° 1 ΠΈ 3.
ΠΡΠΈΠΌΠ΅Ρ β3. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ Π³ΡΠ°ΡΠΈΠΊ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ ΠΈΠ· ΠΏΡΠ½ΠΊΡΠ° Π (Ρ =0 ΠΊΠΌ) Π² ΠΏΡΠ½ΠΊΡ Π (Ρ =30 ΠΊΠΌ). Π§Π΅ΠΌΡ ΡΠ°Π²Π½Π° ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ Π½Π° Π²ΡΠ΅ΠΌ ΠΏΡΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΡΠ΄Π° ΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎ?
Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ Π³ΡΠ°ΡΠΈΠΊΡ, Ρ Π½Π°ΡΠ°Π»Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π΄ΠΎ ΠΏΡΠΈΠ±ΡΡΠΈΡ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ Π² ΠΏΡΠ½ΠΊΡ 2 ΠΏΡΠΎΡΠ»ΠΎ 0,5 ΡΠ°ΡΠ°. Π Ρ Π½Π°ΡΠ°Π»Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π΄ΠΎ Π²ΠΎΠ·Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π² ΠΏΡΠ½ΠΊΡ Π ΠΏΡΠΎΡΠ»ΠΎ 1,5 ΡΠ°ΡΠ°. ΠΠΎΡΡΠΎΠΌΡ Π²ΡΠ΅ΠΌΡ, Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠ΅Π»ΠΎ Π²ΠΎΠ·Π²ΡΠ°ΡΠ°Π»ΠΎΡΡ ΠΈΠ· ΠΏΡΠ½ΠΊΡΠ° Π Π² ΠΏΡΠ½ΠΊΡ Π, ΡΠ°Π²Π½ΠΎ:
Π’ΡΠ΄Π° ΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΠ» ΡΠ°Π²Π½ΡΠ΅ ΠΏΡΡΠΈ, ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π΅Π½ 30 ΠΊΠΌ. ΠΠΎΡΡΠΎΠΌΡ ΡΠΊΠΎΡΠΎΡΡΡ Π²ΠΎ Π²ΡΠ΅ΠΌΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΡ Π ΠΊ Π ΡΠ°Π²Π½Π°:
Π‘ΠΊΠΎΡΠΎΡΡΡ Π²ΠΎ Π²ΡΠ΅ΠΌΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΡ Π ΠΊ Π ΡΠ°Π²Π½Π°:
ΠΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ Π½Π° Π²ΡΠ΅ΠΌ ΠΏΡΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 30 ΠΊΠΌ/Ρ.
ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π³ΡΠ°ΡΠΈΠΊΠΈ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π΄Π»Ρ Π΄Π²ΡΡ ΡΠ΅Π». Π‘ΠΊΠΎΡΠΎΡΡΡ Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΠ΅Π»Π° v2 Π±ΠΎΠ»ΡΡΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΡΠ΅Π»Π° v1 Π² n ΡΠ°Π·, Π³Π΄Π΅ n ΡΠ°Π²Π½ΠΎβ¦
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ
Π Π΅ΡΠ΅Π½ΠΈΠ΅
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊΠΈ Π²ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ ΠΎΡ 0 Π΄ΠΎ 4 Ρ. ΠΠΌΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π΄Π°Π½Π½ΡΠ΅:
Π‘ΠΊΠΎΡΠΎΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
Π’Π°ΠΊ ΠΊΠ°ΠΊ Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈ ΡΠΊΠΎΡΠΎΡΡΡ Π΄Π»Ρ ΠΎΠ±ΠΎΠΈΡ ΡΠ΅Π» Π½ΡΠ»Π΅Π²ΡΠ΅, ΡΠΎΡΠΌΡΠ»Π° ΠΏΡΠΈΠΌΠ΅Ρ Π²ΠΈΠ΄:
Π‘ΠΊΠΎΡΠΎΡΡΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΡΠ΅Π»Π°:
Π‘ΠΊΠΎΡΠΎΡΡΡ Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΠ΅Π»Π°:
ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΠ΅Π»Π° ΠΊ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΡΠ΅Π»Π°:
pΠ°Π·Π±ΠΈΡΠ°Π»ΡΡ: ΠΠ»ΠΈΡΠ° ΠΠΈΠΊΠΈΡΠΈΠ½Π° | ΠΎΠ±ΡΡΠ΄ΠΈΡΡ ΡΠ°Π·Π±ΠΎΡ | ΠΎΡΠ΅Π½ΠΈΡΡ
ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½ Π³ΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ΅Π»Π° ΠΏΠΎ ΠΎΡΠΈ Ox.
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
ΠΡΡΡΠ΄Π° ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°Π²Π½Π°:
ΠΠ°ΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° xo = 10 ΠΌ, ΠΊΠΎΠ½Π΅ΡΠ½Π°Ρ x = β10 ΠΌ. ΠΠ±ΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ, Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π΄Π²ΠΈΠ³Π°Π»ΠΎΡΡ ΡΠ΅Π»ΠΎ, ΡΠ°Π²Π½ΠΎ 40 Ρ.
ΠΡΡΠΈΡΠ»ΡΠ΅ΠΌ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ:
ΠΡΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π³ΡΠ°ΡΠΈΠΊ Β«Π²Β».
pΠ°Π·Π±ΠΈΡΠ°Π»ΡΡ: ΠΠ»ΠΈΡΠ° ΠΠΈΠΊΠΈΡΠΈΠ½Π° | ΠΎΠ±ΡΡΠ΄ΠΈΡΡ ΡΠ°Π·Π±ΠΎΡ | ΠΎΡΠ΅Π½ΠΈΡΡ
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠ΅ΡΡ Π³ΡΠ°ΡΠΈΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄Π΅Π»ΠΈΡΡ Π½Π° 3 ΡΡΠ°ΡΡΠΊΠ°:
ΠΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡ Π·Π°Π΄Π°ΡΠΈ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΡΡΡ, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΌ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΡ t1 = 20 c Π΄ΠΎ t2 = 50 Ρ. ΠΡΠΎΠΌΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ Π΄Π²Π° ΡΡΠ°ΡΡΠΊΠ°:
ΠΠ°ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ ΠΈΡΠΊΠΎΠΌΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ:
s1 β ΠΏΡΡΡ ΡΠ΅Π»Π°, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ Π½Π° ΠΏΠ΅ΡΠ²ΠΎΠΌ ΡΡΠ°ΡΡΠΊΠ΅, s2 β ΠΏΡΡΡ ΡΠ΅Π»Π°, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ Π½Π° Π²ΡΠΎΡΠΎΠΌ ΡΡΠ°ΡΡΠΊΠ΅.
s1 ΠΈ s2 ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠ°Π·ΠΈΡΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΌΡΠ»Ρ ΠΏΡΡΠΈ Π΄Π»Ρ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΈ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ:
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ°ΡΡΡΠΈΡΠ°Π΅ΠΌ ΠΏΡΡΠΈ s1 ΠΈ s2, Π° Π·Π°ΡΠ΅ΠΌ ΡΠ»ΠΎΠΆΠΈΠΌ ΠΈΡ :
pΠ°Π·Π±ΠΈΡΠ°Π»ΡΡ: ΠΠ»ΠΈΡΠ° ΠΠΈΠΊΠΈΡΠΈΠ½Π° | ΠΎΠ±ΡΡΠ΄ΠΈΡΡ ΡΠ°Π·Π±ΠΎΡ | ΠΎΡΠ΅Π½ΠΈΡΡ
Β§ 4. Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΊΠΎΡΠΎΡΡΡ. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ (ΠΎΠΊΠΎΠ½ΡΠ°Π½ΠΈΠ΅)
ΠΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°Π·ΠΈΡΡ Π½Π°Π³Π»ΡΠ΄Π½ΠΎ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ². ΠΡΠΎΠ±Π΅Π½Π½ΠΎ ΠΏΡΠΎΡΡ Π³ΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ (ΡΠΈΡ. 1.11). ΠΡΠΎ ΠΏΡΡΠΌΠ°Ρ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°Ρ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠ»ΠΎΡΠ°Π΄Ρ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΠΠΠ‘, Π·Π°ΡΡΡΠΈΡ ΠΎΠ²Π°Π½Π½Π°Ρ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅, ΡΠ°Π²Π½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ Π·Π° Π²ΡΠ΅ΠΌΡ t. ΠΠ΅Π΄Ρ ΡΡΠΎΡΠΎΠ½Π° ΠΠ Π΅ΡΡΡ Ο x, Π° ΡΡΠΎΡΠΎΠ½Π° ΠΠ‘ β Π²ΡΠ΅ΠΌΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ t, ΠΏΠΎΡΡΠΎΠΌΡ Ξx = Ο xt.
ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ 1.12 ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΠΏΡΠΈΠΌΠ΅ΡΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π΄Π»Ρ ΡΡΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠ»ΡΡΠ°Π΅Π² ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΡΡΠΌΠ°Ρ 1 ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠ»ΡΡΠ°Ρ Ρ 0 = 0, Ο x1 > 0; ΠΏΡΡΠΌΠ°Ρ 2 β ΡΠ»ΡΡΠ°Ρ Ρ 0 0, Π° ΠΏΡΡΠΌΠ°Ρ 3 β ΡΠ»ΡΡΠ°Ρ Ρ 0 > 0, Ο x3 ΠΠ±ΡΠ°Π·ΡΡ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΠΠ
A1. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π²ΡΡΠ°ΠΆΠ°Π΅ΡΡΡ
1) Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ 3) ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ
2) ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ 4) ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ
A3. Π ΡΠ°Π±Π»ΠΈΡΠ΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΊΠΎΡΠ°Π±Π»Ρ, ΠΏΠ»ΡΠ²ΡΡΠ΅Π³ΠΎ ΠΏΠΎ ΠΏΡΡΠΌΠΎΠΌΡ ΠΊΠ°Π½Π°Π»Ρ.
Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ Π΄Π°Π½Π½ΡΠΌ ΡΠ°Π±Π»ΠΈΡΡ, Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠ°Π±Π»Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ
1) ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΡΠΌ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅Π³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡ
2) Π½Π΅ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΡΠΌ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅Π³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡ
3) ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΡΠΌ ΠΏΠ΅ΡΠ²ΡΠ΅ 10 ΠΌΠΈΠ½ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡ ΠΈ Π½Π΅ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΡΠΌ Ρ 10-ΠΉ ΠΏΠΎ 30-Ρ ΠΌΠΈΠ½
4) Π½Π΅ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΡΠΌ ΠΏΠ΅ΡΠ²ΡΠ΅ 10 ΠΌΠΈΠ½ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡ ΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΡΠΌ Ρ 10-ΠΉ ΠΏΠΎ 30-Ρ ΠΌΠΈΠ½

.
.





























