Ученый герц что открыл
Генрих Рудольф Герц. Биография и вклад в физику.
Научный мир помнит много учёных, приблизивших нас к возможности передавать информацию и общаться через расстояния. Генрих Рудольф Герц (Heinrich Rudolf Hertz нем.) внёс большой вклад в изучение физики, который в дальнейшем использовали его последователи для своих изобретений.
Генрих Рудольф Герц. 1983 год
Главные этапы в жизни и науке
Детство и студенчество
Родился будущий учёный 22 февраля 1857 года в крупном немецком городе Гамбурге в богатой еврейской семье. Отец предприниматель и адвокат, в дальнейшем принял лютеранство. Его избрали членом городского совета и выдвинули в сенаторы. Банки, основанные прадедом Генриха Герца в 19 веке, существуют в Германии и сейчас. Мать выросла в семье армейского лекаря. У Генриха были три маленьких брата и сестра. Хорошим здоровьем он не отличался, но подрастая окреп.
С детства у мальчика проявилась способность к обучению, он много читал и знал несколько языков. Родители мечтали о юридической карьере старшего сына. Младшие братья, когда повзрослели пошли по стопам прадеда и стали финансистами.
Поступив в училище Генрих изучал юриспруденцию, но больше его увлекала физика. Следующим этапом была Университетская гимназия, успешно закончив которую, Генрих параллельно получил знания в школе ремёсел, умел читать чертежи, самостоятельно делать столярные конструкции.
Первая попытка была получить инженерное образование и, поступив в 1875 году в Дрезденский технический институт, Генрих проучился там два года. Потом он решительно отказался от этой идеи и перевёлся на второй курс Мюнхенского Политехникума, где углубился в изучение физики.
Генрих Рудольф Герц. 21 год
Плодотворное сотрудничество с преподавателем, крупнейшим физиком того времени — Г. Гельмгольцем, дало Герцу много знаний и опыта. В студенческие годы, под руководством своего наставника, он защитил диссертацию, написал научные труды. Вскоре их связь переродилась в дружбу.
Научные труды
Уже в 23 года Генрих Герц имеет степень доктора философии, с отличием защитив диплом, где рассматривает теорию индукции. Затем работа доцентом, с 1883 года он читает лекции студентам Кильского Университета. Спустя два года занимает должность профессора в «Karlsruher Institut für Technologie». Ещё через пять лет переводится в качестве профессора преподавать в Боннский Университет.
В научном мире вызывали интерес его статьи по теме «Механика», написанные в 1881-82 годах. Идеи, затронутые в работах, впоследствии положили начало изучению фундаментальной природы контакта. Учёные признавали важность исследований Герцем механики контактного взаимодействия, но некоторые выводы подвергли критике.
Увидев в Герце интерес и призвание к физике, Г. Гельмгольц предложил ему осваивать сомнительную в то время научную область — электродинамику. Наблюдения, теории и факты в данном разделе были слабо изучены. Для пытливого ума молодого физика — это оказалось толчком к великим открытиям.
После написания многих теоретических трудов, Генрих Герц полностью перешёл к экспериментам и опытам. Он считал, что как учёный должен доказать на практике верность своих теорий. Будучи профессором Высшего учебного заведения, он имел свою лабораторию, где мог свободно заняться исследованиями той научной сферы, которая давно привлекала его — электричеством.
Герц сделал эту фотографию в своей лаборатории. На ней изображена катушка, которую он использовал (слева), и антенна – дипольный резонатор с искровым промежутком, который он использовал для обнаружения электромагнитного излучения
Увлечение метеорологией
Учёные 19 века ещё мало изучили физику и считали, что энергия вокруг — это действие флюидов. Существование магнитных и электрических полей подвергалось сомнению. Для молодого Герца была привлекательна практическая сторона изучения физических явлений. Он с большим энтузиазмом проводил глубокие исследования.
Небольшой вклад в изучение метеорологии сделал Генрих Герц, написав несколько ранних работ под руководством Г. Гельмгольца. Интерес к изучению данной области зародился летом 1878 года на лабораторных курсах у физика-метеоролога В. Бецольда в Мюнхене. Студент описал наблюдения за испарениями жидкостей и разработал новые инструменты для измерения влажности и свойств воздуха, для исследований адиабатических процессов.
Электромагнитные волны и электродинамика
Опираясь на работы Д. Максвелла, в которых было доказано влияние электромагнитных колебаний на частоту и скорость испускаемых волн, и теоретически подтверждалось, что скорость радиоволн совпадает со скоростью света, Генрих Герц на практике доказал существование электромагнитных волн.
В этом направлении было проведено бесчисленное количество опытов в 1886-89 годах. Несмотря на примитивные приборы для исследований, Г. Герцу удалось подтвердить факты и получить результаты, доказывающие способность преломления и отражения электромагнитных волн, определением их скорости.
Учёный собрал простейшие аппараты для проведения исследований, которые позже назвали его именем и применяют для опытов до сих пор: вибратор Герца — радиопередатчик, резонатор — искровой радиоприёмник. Опытным путём, с помощью сконструированных приборов, были подтверждены теории Д. Максвелла и доказана способность передавать магнитные и электрические волны на расстояние без проводов.
Искровой радиоприёмник Герца
Выводы и доказательства Генриха Герца легли в основу двух статей: «об очень быстрых электрических колебаниях» и «об отражении, преломлении, передвижении в воздухе электродинамических волн». Но дальнейшего развития своих «теорий и выводов» в этом направлении физик не видел.
На самом же деле, тогда он просто не понимал, что внёс неоценимый вклад в создание беспроводного телеграфа, радио и телевидения, то есть в развитие технического прогресса человечества.
Открытие фотоэффекта
Без наблюдений за природными явлениями, опытов и логических заключений Герца многих вещей, привычных для нас сегодня, просто бы не было. Изобретатели основывались на доказанной физической способности взаимодействия электрического заряда и ультрафиолетового излучения, позже названной — фотоэффектом.
Открытие фотоэффекта лежит в основе действия фотоэлементов и нашло широкое применение. Например, в наши дни в условиях космоса невозможно работать без преобразования энергии солнечного света; в киноиндустрии происходит воспроизведение звука. С помощью фотоэлементов, соединённых с реле, созданы автоматические системы, способные улавливать движение — автоматически открывать двери, сортировать предметы, включать освещение и многие другое.
В 1886-87 гг. Генрих Герц впервые наблюдал и дал описание внешнего фотоэффекта
Наблюдая за прохождением излучений через экран из различных материалов, Г. Герцем в 1892 году был описан «эффект луча», на основе которого произошло великое изобретение — рентген. Более полное исследование в этой области делал его ученик, студент Ф. Ленард, который развил теорию проникновения катодных лучей. Проводя дальнейшие эксперименты, немецкий физик В. Рентген в 1895 году сделал открытие икс-излучения, и его способности засвечивать фотопластинки. Так был изобретён рентгеновский аппарат.
Уже в 20 веке, опираясь на опыты Г. Герца, крупный немецкий физик-теоретик Альберт Эйнштейн развил далее теорию излучения и стал лауреатом Нобелевской премии, за создание квантовой теории фотоэффекта.
Личная жизнь
Когда молодой физик занимался профессорской деятельностью в Технологическом институте Карлсруэ и делал великие изыскания, он устроил свою личную жизнь. Возлюбленной учёного стала дочь местного учителя геометрии, Элизабет Долль, которая была на семь лет моложе избранника. Спустя шесть месяцев знакомства молодые люди решили пожениться.
Генрих Герц и его жена Элизабет Долль
Это событие положительно повлияло на эмоциональное состояние Генриха, закончился период депрессии, который с некоторых пор одолевал его. В семье появились две дочери: старшая Иоганна и Матильда (1891 г. р.). Устроив свой семейный быт, Генрих с головой окунулся в науку.
Смерть и наследие ученого
Через год после рождения второй дочери у Г. Герца участились мигрени, заболевание осложнилось гранулематозом, добавилась инфекция крови. Болезнь быстро прогрессировала, присоединялись новые органы жизнедеятельности, он начал слепнуть. За жизнь известного учёного долго боролись медики. В Боннской больнице провели несколько операций, но безуспешно, и в первый день наступившего 1894 года он скончался. Через неполных два месяца Г. Герцу исполнилось бы тридцать семь лет.
Тело перевезли в Гамбург. Захоронение произвели на Ольсдорфском, самом крупном кладбище-парке города. Там и сейчас можно увидеть могилу со скромной гранитной плитой и надписью.
Гранитная плита на могиле Генриха Герца
Когда Элизабет осталась вдовой, то не допускала мысли второй раз выйти замуж. После прихода в Германию фашистского режима и гонений евреев, мать с дочерями перебрались жить в Англию. Герцы были «частично» евреями, но всё же Гитлеровский режим не оставил ни одного портрета учёного-физика в Гамбургской городской ратуше, в Университетах и других почётных местах.
Дочери выросли, но так и не обзавелись семьями, поэтому прямых потомков у Г. Герца не осталось. Младшая дочь Матильда изучала медицину и преуспела в психологии.
У великого изобретателя был племянник, который проявились способности к физике. Густав Л. Герц сделал успешную научную карьеру. Его удостоили Нобелевской премии. Сын Густава Герца пошёл по стопам отца, занимался разработками струйных и ультразвуковых технологий. Карл Х. Герц, участвовал в создании медицинского прибора — сонографа, прообраза современного ультразвукового аппарата.
Густав Людвиг Герц, племянник Генриха Герца
Память и награды Генриха Герца
После своих многочисленных научных работ, он становится авторитетным учёным и членом-корреспондентом ряда европейских Академий, где получает немало наград:
Оставшийся после смерти физика неоконченный труд, дописал и опубликовал его друг, Г. Гельмгольц. Открытия Г. Герца нашли практическое применение спустя годы. Сам учёный не придавал большого значения своим находкам.
Русский изобретатель А. Попов в 1896 году увековечил имя блистательного физика, передав по беспроводному телеграфу латинскими буквами — «Heinrich Hertz».
Именем немецкого учёного в 1930 году названа единица измерения, которая позднее вошла в мировую измерительную систему для определения частоты — Hz, Гц — о чём в наши дни мы узнаём на школьных уроках физики.
В 1969 году в ГДР выпущена памятная медаль с изображением Г. Герца.
Памятная медаль Генриха Герца
Международная ассоциация электротехники и электроники (IEEE) с 1987 года проводит ежегодное награждение учёных и экспериментаторов за выдающийся вклад и достижения в науке — «медалью Генриха Герца».
В Германии именем Г. Герца названа теле-радио-коммуникационная башня, а на Луне — один из кратеров.
Heinrich-Hertz-Turm. Башня Генриха Герца. Гамбург, Германия
Недолгий, по меркам нашего времени, период жизни Генриха Герца был очень плодотворным. Его опыты и теории легли в основу развития многих направлений физики, использованы при создании радио, раций, радаров, телевидения и других изобретений, без которых мы не представляем современную жизнь.
3 открытия Генриха Герца, которые изменили мир
22 февраля 1857 года родился выдающийся физик-экспериментатор Генрих Герц.
В 1896 году учёный Попов, изобретатель радио, осуществил передачу и прием первой в мире радиограммы. Текст её состоял из двух слов «Генрих Герц». Это было чествование немецкого физика, который внес огромный вклад в науку, экспериментально доказав существование электромагнитных волн. В истории науки не так много открытий, с которыми мы соприкасаемся ежедневно. Но без Генриха Герца современный мир выглядел бы совсем по-другому, потому что всё, предназначенное для коммуникации, основано на его изобретениях.
В 1875 Герц уехал в Дрезден поступил в высшее техническое училище. Сначала профессия инженера ему понравилась, однако позже он написал матери, что быть посредственным ученым для него предпочтительнее, чем быть посредственным инженером. Поэтому он ушел из училища и отправился в Мюнхен, где его сразу приняли на второй курс университета. Годы, проведенные в Мюнхене показали Генриху, что университетских знаний недостаточно, необходим был учёный, согласный стать его научным руководителем. Поэтому после окончания университета Герц отправился в Берлин и устроился ассистентом в лабораторию крупнейшего немецкого физика того времени Германа Гельмгольца.
Маститый учёный обратил внимание на талантливого юношу, у них установились хорошие отношения, которые вылились в крепкую дружбу и тесное научное сотрудничество. Под руководством Гельмгольца Герц на отлично защитил докторскую диссертацию по теме «Об индукции во вращающемся шаре». В какой-то момент Генрих начал сомневаться, что его опубликованные теоретические работы имеют ценность для него, как для учёного. Его все больше и больше привлекали эксперименты.
По протекции своего учителя, Герц получил место доцента в Киле, а через шесть лет стал профессором физики в Высшей технической школе в Карлсруэ. Там у Герца была оборудована научная лаборатория для экспериментов, которая давала ему полную творческую свободу и возможность заниматься теми вещами, к которым он чувствовал интерес.
Генрих Герц осознавал, что больше всего на свете его интересовали быстрые электрические колебания, над изучением которых он трудился еще в студенческие годы. Именно в Карлсруэ начался самый плодотворный научный период Герца, который, к сожалению, продлился недолго.
После своего доклада 13 декабря 1888 года в Берлинском университете Герц стал популярным и авторитетным учёным, а электромагнитные волны стали повсеместно называться «лучами Герца». В 1932 году в СССР, а затем в 1933 году на заседании Международной электротехнической комиссии была принята единица частоты «герц», вошедшая затем в международную систему СИ.
Эксперименты с электромагнитными волнами
Вибратор и резонатор Герца
Но теперь требовалось заставить электроны колебаться внутри получившегося отрезка проволоки. Генрих разрезал провод пополам, а концы присоединил к источнику высокого напряжения, чтобы между кусками провода возникали электрические искры.
В 1888 году, после серии трудоемких опытов Герц экспериментально доказал существование предсказанных Максвеллом электромагнитных волн, распространяющихся в пространстве.
Герц был первым человеком, который сознательно управлял электромагнитными волнами, но он не ставил перед собой задачи наладить беспроводную радиосвязь. Однако эксперименты Генриха, которые он подробно описал в своих научных статьях, заинтересовали физиков всего мира. многие ученые начали искать пути усовершенствования приемника и резонатора электромагнитных волн. Резонатор Герца был прибором не очень чувствительным, и мог улавливать испускаемые вибратором электромагнитные волны только в пределах комнаты. Но в итоге открытие учёного привело к изобретению радиотелеграфа, а потом и радио.
Фотоэффект
Чтобы лучше видеть искру во время эксперимента, Герц поместил приёмник в затемнённую коробку. При этом он заметил, что длина искры становится меньше. Тогда Герц провел серию экспериментов в этом направлении, в частности, он исследовал зависимость длины искры в случае, когда между передатчиком и приёмником помещается экран из различных материалов.
Герц нашёл, что электромагнитные волны проходили через одни виды материалов и отражались другими, что привело в будущем к появлению радаров. Кроме того, учёный заметил, что заряженный конденсатор теряет свой заряд гораздо быстрее при освещении его пластин ультрафиолетовым излучением. Новое открытие в физике было названо фотоэффектом, а теоретическое обоснование этому явлению дал Альберт Эйнштейн, получивший за это Нобелевскую премию в 1921 году.
Биография Генриха Рудольфа Герца
В истории науки не так много открытий, с которыми приходиться соприкасаться каждый день. Но без того, что сделал Генрих Герц, современную жизнь представить уже невозможно, поскольку радио и телевидение являются необходимой частью нашего быта, а он сделал открытие именно в этой области.
Генрих Рудольф Герц родился 22 февраля 1857 года в семье адвоката, позже ставшего сенатором. Мальчик был слабым и болезненным, но благополучно преодолел необычайно трудные для него первые годы жизни, и, к радости родителей, выровнялся, стал здоровым и жизнерадостным.
Все считали, что он пойдет по стопам отца. И действительно, Генрих поступил в Гамбургское реальное училище и собирался изучать юриспруденцию. Однако после того как у них в училище начались занятия по физике, его интересы круто изменились. К счастью, родители не мешали мальчику искать свое призвание и разрешили ему перейти в гимназию, окончив которую он получал право поступления в университет.
Получив аттестат зрелости, Герц уехал в 1875 году в Дрезден и поступил в высшее техническое училище. Вначале ему там понравилось, но постепенно юноша понял, что карьера инженера не для него. 1 ноября 1877 года он отправил родителям письмо, где были такие слова: «Раньше я часто говорил себе, что быть посредственным инженером для меня предпочтительнее, чем посредственным ученым. А теперь думаю, что Шиллер прав, сказав: «Кто трусит рисковать жизнью, тот не добьется в ней успеха». И эта излишняя моя осторожность была бы с моей стороны безумием».
Поэтому он ушел из училища и отправился в Мюнхен, где был принят сразу на второй курс университета. Проведенные в Мюнхене годы показали, что университетских знаний недостаточно; для самостоятельных научных занятий необходимо было найти ученого, который согласился бы стать его научным руководителем. Вот почему после окончания университета Герц отправился в Берлин, где устроился ассистентом в лаборатории крупнейшего немецкого физика того времени Германа Гельмгольца.
Гельмгольц вскоре заметил талантливого юношу, и между ними установились хорошие отношения, которые впоследствии перешли в тесную дружбу и одновременно в научное сотрудничество. Под руководством Гельмгольца Герц защитил диссертацию и стал признанным специалистом в своей области.
Гельмгольц в своем некрологе вспоминает начало научного пути Герца, когда он предложил ему тему для студенческой работы из области электродинамики, «будучи уверен, что Герц заинтересуется этим вопросом и успешно его разрешит». Таким образом, Гельмгольц ввел Герца в ту область, в которой ему впоследствии пришлось сделать фундаментальные открытия и обессмертить себя. Характеризуя состояние электродинамики в то время (лето 1879 года), Гельмгольц писал: «...Область электродинамики превратилась в то время в бездорожную пустыню. Факты, основанные на наблюдениях и следствиях из весьма сомнительных теорий, — все это было вперемежку соединено между собой». Именно в этот год Герц родился как ученый.
Экспериментальный аппарат Герца 1887 года.
Начинающего ученого всецело захватила работа над обязательной для выпускника университета докторской диссертацией, которую он хотел закончить как можно скорее. 5 февраля 1880 года Генрих Герц был увенчан степенью доктора наук с редким в истории Берлинского университета, да еще у таких строгих профессоров, как Кирхгоф и Гельмгольц, предикатом — с отличием. Его дипломная работа «Об индукции во вращающемся шаре» была теоретической, и он продолжал заниматься теоретическими изысканиями в физическом институте при университете.
Но Генрих Герц стал сомневаться, так как он считал, что теоретические работы, опубликованные им, случайны для него как для ученого. Его все больше и больше стали привлекать эксперименты.
По рекомендации своего учителя в 1883 году Герц получил должность доцента в Киле, а через шесть лет стал профессором физики в Высшей технической школе в Карлсруэ. Здесь у Герца была своя собственная экспериментальная лаборатория, которая обеспечила ему свободу творчества, возможность заниматься тем, к чему он чувствовал интерес и признание. Герц осознал, что больше всего на свете его интересует электричество, быстрые электрические колебания, над изучением которых он трудился еще в студенческие годы. Именно в Карлсруэ начался наиболее плодотворный период его научной деятельности, который, к сожалению, продолжался недолго.
В работе 1884 года Герц показывает, что максвелловская электродинамика обладает преимуществами по отношению к обычной, но считает не доказанным, что она является единственно возможной. В дальнейшем Герц, однако, остановился на компромиссной теории Гельмгольца. Гельмгольц взял у Максвелла и Фарадея признание роли среды в электромагнитных процессах, но в отличие от Максвелла считал, что действие незамкнутых токов должно быть отлично от действия замкнутых токов.
Этот вопрос изучал в лаборатории Гельмгольца Н.Н. Шиллер в 1876 году. Шиллер не обнаружил различия между замкнутыми и незамкнутыми токами, как-то и должно было быть по теории Максвелла! Но, видимо, Гельмгольц не удовлетворился этим и предложил Герцу вновь заняться проверкой теории Максвелла.
Подсчеты Герца показали, что ожидаемый эффект даже при наиболее благоприятных условиях будет слишком мал, и он «отказался от разработки задачи». Однако с этих пор он не переставал думать о возможных путях ее решения и его внимание «было обострено в отношении всего, что связано с электрическими колебаниями».
История жизни Генриха Рудольфа Герца
К началу исследований Герца электрические колебания были изучены и теоретически и экспериментально. Герц с его обостренным вниманием к этому вопросу, работая в высшей технической школе в Карлсруэ, нашел в физическом кабинете пару индукционных катушек, предназначавшихся для лекционных демонстраций. «Меня поразило, — писал он, — что для получения искр в одной обмотке не было необходимости разряжать большие батареи через другую и более того, что для этого достаточны небольшие лейденские банки и даже разряды небольшого индукционного аппарата, если только разряд пробивал искровой промежуток». Экспериментируя с этими катушками, Герц пришел к идее своего первого опыта.
Экспериментальную установку и сами опыты Герц описал в опубликованной в 1887 году статье «О весьма быстрых электрических колебаниях». Герц описывает здесь способ генерации колебаний, «приблизительно в сто раз быстрее наблюденных Феддерсеном». «Период этих колебаний, — пишет Герц, — определяемый, конечно, лишь при помощи теории, измеряется стомиллионными долями секунды.
Следовательно, в отношении продолжительности они занимают среднее место между звуковыми колебаниями весомых тел и световыми колебаниями эфира», но ни о каких электромагнитных волнах длиной порядка 3 метров Герц в этой работе не говорит. Все, что он сделал, это сконструировал генератор и приемник электрических колебаний, изучая индукционное действие колебательного контура генератора на колебательный контур приемника при максимальном расстоянии между ними 3 метра.
В работе «О действия тока» Герц перешел к изучению явлений на более далеком расстоянии, работая в аудитории длиной 14 метров и шириной 12 метров. Он обнаружил, что если расстояние приемника от вибратора менее одного метра, то характер распределения электрической силы аналогичен полю диполя и убывает обратно пропорционально кубу расстояния.
Однако на расстояниях, превышающих 3 метра, поле убывает значительно медленнее и неодинаково в различных направлениях. В направлении оси вибратора действие убывает значительно быстрее, чем в направлении, перпендикулярном оси, и едва заметно на расстоянии 4 метров, тогда, как в перпендикулярном направлении, оно достигает расстояний, больших 12 метров.
Этот результат противоречит всем законам теории дальнодействия. Герц продолжал исследование в волновой зоне своего вибратора, поле которого он позже рассчитал теоретически. В ряде последующих работ Герц неопровержимо доказал существование электромагнитных волн, распространяющихся с конечной скоростью. «Результаты опытов, поставленных мною над быстрыми электрическими колебаниями, — писал Герц в своей восьмой статье 1888 года, — показали мне, что теория Максвелла обладает преимуществом перед всеми другими теориями электродинамики».
Поле в этой волновой зоне в различные моменты времени Герц изобразил с помощью картины силовых линий. Эти рисунки Герца вошли во все учебники электричества. Расчеты Герца легли в основу теории излучения антенн и классической теории излучения атомов и молекул.
Таким образом, Герц в процессе своих исследований окончательно и безоговорочно перешел на точку зрения Максвелла, придал удобную форму его уравнениям, дополнил теорию Максвелла теорией электромагнитного излучения. Герц получил экспериментально электромагнитные волны, предсказанные теорией Максвелла, и показал их тождество с волнами света.
В 1889 году на 62-м съезде немецких естествоиспытателей и врачей Герц прочитал доклад «О соотношении между светом и электричеством». Здесь он подводит итоги своих опытов в следующих словах: «Все эти опыты очень просты в принципе, но, тем не менее, они влекут за собой важнейшие следствия. Они рушат всякую теорию, которая считает, что электрические силы перепрыгивают пространство мгновенно. Они означают блестящую победу теории Максвелла. Насколько маловероятным казалось ранее ее воззрение на сущность света, настолько трудно теперь не разделить это воззрение».
В 1890 году Герц опубликовал две статьи: «Об основных уравнениях электродинамики в покоящихся телах» и «Об основных уравнениях электродинамики для движущихся тел». Эти статьи содержали исследования о распространении «лучей электрической силы» и, в сущности, давали то каноническое изложение максвелловской теории электрического поля, которое вошло с тех пор в учебную литературу.
Опыты Герца вызвали огромный резонанс. Особенное внимание привлекли опыты, описанные в работе «О лучах электрической силы». «Эти опыты с вогнутыми зеркалами, — писал Герц в «Введении» к своей книге «Исследования по распространению электрической силы», — быстро обратили на себя внимание, они часто повторялись и подтверждались. Они получили положительную оценку, которая далеко превзошла мои ожидания».
Среди многочисленных повторений опытов Герца особое место занимают опыты русского физика П. Н. Лебедева, опубликованные в 1895 году, первом году после смерти Герца.
В последние годы жизни Герц переехал в Бонн, где также возглавил кафедру физики в местном университете. Там он совершил еще одно крупнейшее открытие. В своей работе «О влиянии ультрафиолетового света на электрический разряд», поступившей в «Протоколы Берлинской Академии наук» 9 июня 1887 года, Герц описывает важное явление, открытое им и получившее впоследствии название фотоэлектрического эффекта.
Это замечательное открытие было сделано благодаря несовершенству герцевского метода детектирования колебаний: искры, возбуждаемые в приемнике, были настолько слабы, что Герц решил для облегчения наблюдения поместить приемник в темный футляр. Однако оказалось, что максимальная длина искры при этом значительно меньше, чем в открытом контуре. Удаляя последовательно стенки футляра, Герц заметил, что мешающее действие оказывает стенка, обращенная к искре генератора.
Исследуя тщательно это явление, Герц установил причину, облегчающую искровой разряд приемника, — ультрафиолетовое свечение искры генератора. Таким образом, чисто случайно, как пишет сам Герц, был открыт важный факт, не имевший прямого отношения к цели исследования. Этот факт сразу же привлек внимание ряда исследователей, в том числе профессора Московского университета А.Г. Столетова, особенно тщательно исследовавшего новый эффект, названный им актиноэлектрическим.
Могила Генриха Рудольфа Герца.
Исследовать это явление детально Герц не успел, поскольку скоропостижно умер от злокачественной опухоли 1 января 1894 года. До последних дней жизни ученый работал над книгой «Принципы механики, изложенные в новой связи». В ней он стремился осмыслить собственные открытия и наметить дальнейшие пути исследования электрических явлений.
После безвременной смерти ученого этот труд закончил и подготовил к изданию Герман Гельмгольц. В предисловии к книге он назвал Герца самым талантливым из своих учеников и предсказал, что его открытия будут определять развитие науки на многие десятилетия вперед.
Слова Гельмгольца оказались пророческими и начали сбываться уже через несколько лет после смерти ученого. А в XX веке из работ Герца возникли практически все направления современной физики.