Ультрабыстрый диод что это
Для более эффективной борьбы с описанными помехами В.Жбанов предлагает следующий ряд мер (рис.25).
В дополнение к привычному конденсатору С1, шунтирующему первичную обмотку, необходимо ввести RC-цепи R1C2, R2C3, шунтирующие и демпфирующие полуобмотки вторичной обмотки. Это способствует прекращению образования импульсов тока через закрывающиеся диоды и, кроме того, из-за возникающих фазовых сдвигов способствует частичной компенсации первой гармоники тока холостого хода первичной обмотки, т.е. снижает ток холостого хода и магнитное поле рассеивания в паузе.
Все провода между вторичной обмоткой и выпрямительными диодами, между диодами и конденсаторами сглаживающего фильтра, а также идущие с выхода БП к разным каскадам усилителя необходимо свить, а перед тем в каждый провод ввести дроссели L1. L8 индуктивностью 10. 40 мкГн, которые без разрыва провода организуются пропусканием его внутри нескольких ферритовых трубочек длиной в пару сантиметров или набора ферритовых колец диаметром 6. 8 мм. Сквозь такой ферритовый столбик провод пропускают 2-3 раза (т.е. делают 2-3 витка).
Весьма эффективно также шунтирование диодов конденсаторами значительной емкости С4, С5, а также разделение емкости накопительных конденсаторов на меньшую С6, С7 (10..20%) и основную С8, С9 части, между которыми размещаются вышеназванные дроссели L1, L2.
Упомянутые меры позволяют сузить спектр помех блока питания до 1. 3 кГц, которые уже практически не распространяются в звуковой тракт ни по паразитным емкостям монтажа, ни через паразитную индуктивную связь.
Использованы материалы:
1. «Радиомир» №6/2007, с. 12-14
2. «Радиомир» №7/2007, с. 12, 13
3. сеть Интернет
Камрад, рассмотри датагорские рекомендации
🌼 Полезные и проверенные железяки, можно брать
Опробовано в лаборатории редакции или читателями.
Ультрабыстрые диоды (диоды Шоттки)
Идеально подходят для силовых схем так называемые диоды Шоттки. Отличие диодов Шоттки от других диодов состоит в том, что они производятся по оригинальной технологии, и в их структуре практически отсутствуют неосновные носители заряда, которые как раз и влияют на величину времени обратного восстановления. На сегодняшний день в номенклатуре фирм можно встретить диоды Шоттки, допускающие прямой ток через себя порядка 240 А, например, 249NQ150 производства фирмы «International Rectifier». Другое преимущество диодов Шоттки — более низкое падение напряжения в открытом состоянии, что делает их незаменимыми в низковольтных схемах.
К сожалению, диоды Шоттки имеют существенный недостаток: максимальное обратное напряжение у самых лучших представителей этого класса силовых приборов не превышает величину 150 В. Более того, в подавляющем большинстве случаев вы едва ли встретите диоды Шоттки встроенными в корпуса мощных силовых модулей. Что предпринять в таком случае? К счастью, разработана технология производства специальных ультрабыстрых диодов, называемых гексагональными эпитаксильными диодами со сверхбыстрым временем обратного восстановления. Например, диоды серии Hexfred, производимые фирмой «International Rectifier», имеют величинудопустимого напряжения в закрытом состоянии до 1200 В, а по своим свойствам обратного восстановления могут легко соперничать с диодами Шоттки.
Познакомимся с характеристиками ультрабыстрых диодов поподробнее. На рис. 2.7.25 показана типовая кривая обратного восстановления ультрабыстрого диода. В момент открывания ключевого транзистора VT начинается спадание тока диода, затем ток достигает нулевого значения, меняет знак и далее достигает значение irrm, называемого в технической документации пиковым током обратного восстановления (peak reverse recovery current). Процесс нарастания тока обратного восстановления занимает время /fl, называемое временем роста обратного тока восстановления. После этого ток спадает до
Конечно, в технической документации обычно приводятся данные по суммарному времени обратного восстановления, пиковому току обратного восстановления, и по этим данным теоретически можно рассчитать тепловые потери, возникающие в процессе обратного восстановления диода. Однако на практике пользоваться этими данными для расчета тепловых потерь неудобно, так как величина пикового тока обратного восстановления и время восстановления зависят от величины приложенного обратного напряжения. Производители диодов рекомендуют для определения тепловых потерь обратного восстановления пользоваться величиной заряда обратного восстановления (reverse recovery charge), обозначаемого символом Qrr Величину заряда обратного восстановления можно получить непосредственно из технической документации на конкретный диод или рассчитать по приближенной формуле
нулевого значения за время tb9 называемое временем спада обратного тока восстановления. Полное время trr обратного восстановления диода (reverse recovery time) определяется по формуле
Тепловые потери обратного диода в полумостовых силовых схемах складываются из статических потерь проводимости и потерь обратного восстановления. Статические потери вычислить несложно: они будут определяться величиной прямого падения напряжения Uf на открытом диоде, средним током проводимости и длительностью протекания тока в открытом состоянии, отнормированному к периоду коммутации.
С потерями обратного восстановления сложнее. Поскольку к диоду прикладывается большое обратное напряжение в то время, когда через него течет прямой ток, диоду нужно рассеивать большую мощность. Функция изменения тока во времени носит сложный характер (рис. 2.7.25), поэтому нам придется вычислять мгновенную мощность на очень коротких промежутках времени, а потом получившиеся результаты просуммировать.
Итак, энергия тепловых потерь определяется суммой произведений тока через диод на напряжение, приложенное к нему, на протяжении времени протекания тока. Поскольку к диоду прикладывается напряжение величиной Um, энергия переключения E^ будет определяться по формуле
Если мы внимательнее присмотримся к формуле (2.7.9), то обнаружим, что интеграл здесь есть заряд обратного восстановления диода, который может быть вычислен по формуле (2.7.8) или взят из справочных данных. С учетом приведенных выражений, можно вычислить мощность потерь обратного восстановления:
i
где / — частота коммутации.
Полные тепловые потери, как обычно, определяются суммой статических и динамических потерь по формуле
В табл. 2.7.2 приведены основные параметры некоторых ультрабыстрых диодов.
Таблица 2.7.2, Параметры некоторых ультрабыстрых диодов фирмы «International Rectifier»
Мировые производители силовой элементной базы выпускают столь большую номенклатуру ультрабыстрых диодов, что рассматривать их в рамках данной книги просто не имеет смысла, а читатели без труда найдут для своих разработок подходящие диоды без дополнительных авторских «наводок». Расскажем лишь о перспективах отечественного производства этих важных для силовой электроники компонентов. К примеру, ОАО «ВЗПП-Сборка» [18] выпускает значительное количество ультрабыстрых диодов, аналоги которых производятся «International Rectifier». Диапазон токов этих диодов ограничивается значениями 20…25 А, поэтому в случае необходимости использования более мощных диодов имеет смысл обратить внимание на продукцию ОАО «Электровыпрямитель» [21]. Эта уже знакомая нам фирма поставляет на рынок диодные быстровосстанавливающиеся модули типа SFRD в полумостовом включении (анод первого дио
да подключен к катоду второго) и в одиночном включении. Полумостовые диодные сборки маркируются как М2ДЧ, а одиночные — как МДЧ. Время обратного восстановления диодов и диодных сборок не превышает 0,2…0,3 мкс при номинальных рабочих токах до 300 А.
Кратко упомянем такие всем известные элементы, как стандартные диодные мосты. Оказывается, при разработке силовых схем статических преобразователей эти элементы играют чрезвычайно важную роль: диодный мост — это одно из важнейших звеньев силовой преобразовательной схемы, и при выходе его из строя неработоспособным становится весь преобразователь. Кроме того, до настоящего времени разработчику приходилось закладывать в свои разработки выпрямительные диоды в одиночном исполнении, соединяя их, например, по трехфазной схеме выпрямления Ларионова. Понятно, что при таком подходе разработчик сильно проигрывает в габаритах этого узла.
Специально для применения в силовой преобразовательной технике разработаны компактные диодные мосты, включающие в себя четыре диода (однофазная схема) и шесть диодов (трехфазная схема). На рис. 2.7.26 показан внешний вид трехфазного диодного моста типа 160MT120KB, выпускаемого фирмой «International Rectifier». Диодный мост выдерживает значение продолжительного номинального тока до 160 А, а также значение пикового пускового тока до 1500 А. Диоды моста рассчитаны на значение обратного напряжения до 1200 В.
Интерес для разработчика силовой преобразовательной техники могут также представлять диодные мосты, производимые ЗАО «Электрум АВ» [22]. Номенклатура их достаточно широка: выпускаются
мосты как для монтажа на печатную плату (в том числе и в трехфазном варианте), так и для объемного монтажа. К примеру, мосты типоразмера M6 (рис. 2.7.27) производятся на номинальные токи 63 А, 100 А, 160 А, 200 А, 250 А с рабочим напряжением до 1200 В (исполнение 12) и до 1600 В (исполнение 16). Диоды выдерживают пятикратную токовую перегрузку.
Источник: Семенов Б. Ю. Силовая электроника: профессиональные решения. — М.: СОЛОН-ПРЕСС, 2011. — 416 c.: ил.
AudioKiller’s site
Audio, Hi-Fi, Hi-End. Электроника. Аудио.
Материалы раздела:
Выпрямитель для усилителя или сага о быстром диоде
Многие говорят что в выпрямителях усилителей должны использоваться только лишь диоды Шоттки, или сверхбыстрые диоды («суперфаст» — это если по-русски ). Если поставить обычные «медленные» диоды, то Великий Аудиофильский Дух обидится и хорошего звука вам не видать!
На наше счастье, Великий Аудиофильский Дух может навредить только тем, кто в него верит. Давайте попробуем разобраться в необходимости применения таких диодов без привлечения эзотерики, а при помощи одной лишь науки и техники.
Единственная претензия, предъявляемая к диодам, состоит в том, что они медленно закрываются, и при этом через них будто бы протекает обратный ток, разряжающий конденсаторы фильтра. Говорят, что это происходит примерно так, как показано на рис.1 красной линией.
Называют две основных причины протекания обратного тока:
1. Рассасывание объемного заряда в базе диода, в течение которого диод еще не закрылся.
2. Заряд емкости обратно смещенного n-p перехода, когда диод уже закрылся.
Мы разберем обе эти причины. Но сначала давайте подумаем вот о чем: если бы через диод протекал бы большой обратный ток (даже такой, как на рисунке 1), то конденсаторы фильтра разряжались бы сразу после своей зарядки, и напряжения питания никакого бы и не было! Раз выпрямители работают даже на медленных диодах, то разряд этот не такой уж большой и страшный (и почему-то в профессиональных методах рассчета выпрямителей про этот самый обратный ток вообще ничего не говорится!).
Начнем с эксперимента — практика, как известно, — критерий истины. Соберем схему простейшего выпрямителя с обычным «медленным» диодом (рис.2):
Вот как это выглядит в реальности:
Посмотрим на осциллографе ток через диод, ток довольно большой — максимальная амплитуда 12 ампер, что соответствует работе диода в реальных условиях:
Чего-то не видно этих самых токов разряда. Для большей наглядности изменим масштаб и добавим на осциллограмму линию развертки, чтобы был виден ноль, и если бы график нырял вниз вследствие тока разряда, это было бы хорошо заметно (рис.5):
Сравните рис.1 и рис.5. В реальности не хватает той части, которая соответствует разряду конденсатора обратным током диода. Значит ли это, что такого тока нет вообще? Нет, обратный ток есть, просто он настолько мизерный, что обнаружить его обычным осциллографом в таком простом эксперименте невозможно (я даже так с ходу и не скажу, как можно измерить ток разряда в моем выпрямителе).
Давайте попробуем прикинуть, какой разрядный ток будет протекать через диод и насколько этот ток разрядит конденсатор фильтра. Я использую упрощенный расчет, так как при полном правильном расчете не обойтись без интегралов и прочей высшей математики. Упрощение сильно снизит точность (и завысит результаты!), но порядок цифр будет более-менее верным, и мы его наглядно представим.
Для простоты давайте рассчитаем мой выпрямитель, который я исследовал.
Причина 1.
Рассасывание объемного заряда в базе диода, вследствие чего он остается некоторое время в открытом состоянии. Время рассасывания возьмем 10 микросекунд. Это весьма большое время и у большинства диодов оно заметно меньше. Принцип расчета показан на рис. 6.
Итак, какое-то время диод открыт в прямом направлении и проводит прямой ток. После чего он должен закрыться, чтобы не пропустить ток обратный. Но диод не закрывается, и начинает пропускать обратный ток, показанный на рис.6 внизу красной линией. Ток протекает в течение времени Δt, равному времени рассасывания, т.е. у нас Δt = 10 мкс. При этом к диоду приложено обратное напряжение ΔU, из-за которого на самом деле и протекает обратный ток (а из-за чего еще ему протекать?).
Если мы узнаем ΔU, то можно будет определить и ток, а зная ток и время, которое он протекает – определить разряд конденсатора фильтра.
Поехали. Посмотрим, что там делается на самом деле – реальная осциллограмма на рис.7 (а линии на ней довольно условны):
Для нахождения ΔU определимся со временем и фазовыми углами. Находим цену деления по горизонтали: 360 градусов = 50 делений, значит одно деление 7,2 градуса. От начала периода напряжения до конца протекания тока диода:
Это начало обратного тока диода. Обратный ток длится Δt=10 мксек. Переведем секунды в градусы: один период синусоиды 360 градусов = 20 миллисек, а 10 мкс — Х. Из пропорции находим, что Х = 10 мкс = 0,18 градуса. Следовательно, конец протекания обратного ток диода – 136,98 градуса.
Итак, ΔU – это разность напряжений между точками «а» и «б» на рисунках 6 и 7. Напряжение в точке «а»:
Напряжение в точке «б»:
Теперь найдем ток через диод. Объемное сопротивление базы Rб мощных диодов примерно равно 0,05 Ом. Ток по закону Ома:
Ну а теперь посмотрим, насколько же разряжается конденсатор фильтра при разряде током 1,6 А в течение 10 мкс:
На самом деле конденсатор разрядится намного меньше (из-за того, что ток не все время остается максимальным). Но и то, сравните напряжение на заряженном конденсаторе = 28,2 вольта и эти несчастные 1,6 мВ! Конечно их будет незаметно, ведь это 0,006% от напряжения на конденсаторе.
Итак, можем ли мы пренебречь разрядом конденсатора на 0,006%? Я так думаю, что можем. Если же поставить быстрый диод с временем рассасывания 100 нс, то разряд конденсатора уменьшится раз в 100 и будет равен 0,00006%. Выигрыш – ну просто обалденный. А народ еще спорит, какие диоды лучше — с временем восстановления 50 нс или все же подойдут 70 нс диоды!
В чем заключается упрощение расчета? В том, что на самом деле обратное напряжение на диоде растет медленно, и обратный ток тоже растет медленно и имеет примерно такую форму, как на рис. 6 (т.е. было неправильно делить максимальное напряжение на сопротивление). Поэтому максимальный ток на самом деле будет раз в пять-десять меньше, чем мы посчитали. И максимальным он будет не все время, а лишь чуть-чуть. И разряд конденсатора — тоже будет меньше в несколько раз.
Причина 2.
Обратный ток через емкость запертого диода.
Прежде чем рассуждать о емкостном токе, вспомним, что существует такая схема включения диодов моста (рис.8), и она имеет ряд преимуществ перед обыкновенной.
В этой схеме емкость конденсаторов раз в 30 превышает емкость диодов, значит и обратный ток через конденсаторы течет в 30 раз больше (т.е. как бы обратный ток через емкость диода повышается в 30 раз), но никто почему-то не плачет по этому поводу.
Но у нас просто одиночный диод, его емкость порядка 300 пикофарад. Для того, чтобы определить, насколько заряд этой емкости «посадит» конденсатор фильтра, воспользуемся формулой:
Тогда, учитывая, что максимальное напряжение конденсатора 28,2 В:
Это в 1000 раз меньше, чем из-за объемного заряда и на такой мизер внимания обращать вообще нельзя! Точно также, при подключении конденсаторов параллельно диодам, снижение напряжение на конденсаторе фильтра будет 30…50 мкВ — подключайте конденсаторы на здоровье!
Вот и все. Никаких других объективных причин влияния «медленности» диода на работу выпрямителя не существует! (разве что ВЧ помехи про которые ниже). Что там думает себе Великий Аудиофильский Дух — нам по барабану, давайте обсудим результаты.
Итак, что же получается? Обыкновенные «медленные» диоды никакого заметного разряда конденсаторов фильтра и не вызывают! А как же тогда быть с утверждениями: «я заменил обычные диоды на ультрафаст, и усилитель зазвучал!»? Ну, во-первых, на это есть первый закон самовнушения: «Если в системе заменить даже самый маленький проводок, система сразу зазвучит лучше». Этот закон объясняет 80% всех наших улучшений звучания (так хорошо слышимых на слух). На самом деле, никакого ужасного разряда конденсаторов «медленными» диодами не происходит, и значит не происходит никакого изменения звука от применения ультрафаст диодов. Это все аудиофильские сказки. Кроме того — самое главное — разряд конденсаторов питания всего лишь уменьшает напряжение питания! Ну и как это скажестя на качестве звучания?
А как же быть с тем, что в импульсных блоках питания, например компьютерных, устанавливают ультрафасты или Шоттки? Все верно. На тех частотах, на которых работают импульсные блоки, время закрывания диода будет равно уже порядка 1/3 периода (а не 1/2000, как на частоте 50 Гц), и это слишком много. Кроме того, импульсные сигналы имеют крутые фронты, и там напряжение на диоде изменяется резко, поэтому высокое обратное напряжение появляется сразу, что вызывает высокие обратные токи.
Есть и отрицательная сторона «скорости» диода. Отпирание/запирание диодов создает импульсы тока с довольно резкими фронтами, а значит и создает широкий спектр помех, который излучается выпрямителем, проводами, идущими к нему от трансформатора и проводами, идущими к конденсатору фильтра. И эти помехи попадают в усилитель и подгружают его высокими частотами (до сотен килогерц). Поэтому некоторые специалисты (например, профессор Никитин) даже советуют подключать выпрямитель к трансформатору через небольшой дроссель, это замедлит процессы отпирания/запирания диодов и снизит помехи.
Мне нечем измерить высокочастотную помеху, вот низкочастотная часть спектра тока диода моего выпрямителя — до 20 кГц.
Красная линия — спектр тока непосредственно выпрямителя, а синяя — при включении последовательно с диодом катушки с небольшой индуктивностью, что снижает уровень ВЧ составляющих тока, а как раз именно они хорошо излучаются в эфир в виде помех.
Более быстрое отпирание/запирание «быстрых» диодов даст импульсы тока с более резкими фронтами, а значит и спектр помех, излучаемых выпрямителем, станет более широким. И с этими помехами будет труднее бороться, а попав в усилитель, они сильнее перегрузят его высокими частотами, чем если бы использовать «обыкновенные» диоды. Эта перегрузка на ВЧ (теперь уже до мегагерц) дает интермодуляции с усиливаемым сигналом и вполне может быть заметна на слух как изменение звучания. Например именно таким способом (подмешиванием ультразвуковых сигналов частоты дискретизации) пользовались некоторые изготовители карманых CD плееров. При этом субъективно увеличивалось количество высоких частот и такую «фичу» даже называли что-то типа «живые высокие». Натуральность звука на самом деле при этом уменьшалась.
Но на самом деле, есть своя польза от применения в выпрямителях диодов Шоттки. Дело в том, что прямое падение напряжения на них гораздо меньше, чем на обычных диодах с n-p переходом, а значит потери напряжения в выпрямителе будут меньше и больше напряжения уйдет в питание усилителя. В моем тестовом выпрямителе на обычном диоде при токе 12 А падало 1,2 вольт, а на диоде Шоттки — 0,6 вольт. Значит на диодном мосте в первом случае теряется 2,4 В, а во втором только 1,2 В. Скажете: «Подумаешь мелочь, ерунда 1 вольт!». Не всегда мелочь и ерунда. Если у вас напряжение питания усилителя +-60 вольт, то этот самый 1 вольт действительно ерунда. А если питание +-24 вольта? Давайте посчитаем. Просадка напряжения выпрямителя под нагрузкой порядка 80% от хх. В вольтах это получается 19,2. Падение напряжения на диодах 2,4 вольта. Падение напряжения на выходом каскаде усилителя, допустим, 4 вольта. Значит, на выходе усилителя получаем 19,2 — 2,4 — 4 = 12,8 вольт амплитуды. На синусе, на нагрузке 6 Ом это будет всего лишь 13,6 Вт. Если же использовать диоды Шоттки, то максимальное напряжение на выходе: 19,2 — 1,2 — 4 = 14 В, и синусная мощность уже 16,3 Вт. Чуть-чуть, но больше. Посмотрим на это чуть-чуть повнимательнее.
Музыкальный сигнал имеет импульсную структуру с резкими всплесками:
Большей частью средний уровень сигнала невысокий и легко воспроизводится усилителем. А вот максимальные значения импульсов… В нашем примере если максимальная выходная мощность усилителя 16 Вт (с диодами Шоттки), то он полностью воспроизводит пики сигнала (рис.10). А с обычными диодами, когда выходная мощность 13 Вт, пики обрезаются, как показано на рис. 10 красной линией (ну не хватает мощности для них!). Психоакустика установила, что если эти редкие всплески вот так обрезать, то сознание этого не заметит, то есть мы не будем слышать явных искажений. Но с субьективной стороны при прослушивании мы будем ощущать, что «что-то не то» — отсутствует легкость, воздушность, естественность, прозрачность и прочие «чувственные» части звука. И в таком случае действительно замена обычных диодов на диоды Шоттки существенно улучшает звучание! И именно с той «необъяснимой» субъективной стороны. На самом же деле — никакой мистики, никакого волшебства, чистая физика! Такой вариант событий встречается, на самом деле, довольно часто, и довольно часто применение диодов Шоттки оправдано и технически, и с точки зрения улучшения звучания усилителей.
Выходит, что суперфаст диоды на самом деле в выпрямителе для усилителя и нафиг не нужны и никакой реальной пользы от них нет (зато они более «нежные» и хуже выдерживают перегрузки по току в отличие от «медленных»). А вот диоды Шоттки иногда бывают очень даже полезны, но не быстродействием своим, а низким прямым падением напряжения. Естествено, это справедливо только для «аналоговых» выпрямителей, работающих с частотой сети 50 Гц. Но с другой стороны, если говорить о высококачественных усилителях, то только такие источники питания туда и нужны — импульсные источники и Hi-Fi несовместимы!