Уникальный ключ sql что это
Интернет и базы данных. Часть 04. Ключи и ссылочная целостность
Первичный ключ
Уникальный ключ
Внешний ключ
И самое главное. Все значения внешнего ключа должны совпадать с каким-либо из значений родительского ключа. (Заметим в скобках насчет совпадения / несовпадения: нюансы возникают, когда в значениях столбцов вторичного ключа встречается NULL. Давайте пока в эти нюансы вдаваться не будем). Появление значений внешнего ключа, для которых нет соответствующих значений родительского ключа, недопустимо. Вот тут-то мы плавно переходим к понятию ссылочной целостности.
Ссылочная целостность
Первое из правил ссылочной целостности фактически уже изложено в предыдущем абзаце: в таблице не допускается появления (неважно, при добавлении или при модификации) строк, внешний ключ которых не совпадает с каким-либо из имеющихся значений родительского ключа.
Более интересные моменты возникают, когда мы удаляем или изменяем строки родительской таблицы. Как при этом не допустить появления \»болтающихся в воздухе\» строк дочерней таблицы? Для этого существуют правила ссылочной целостности ON UPDATE и ON DELETE, которые, по стандарту SQL 92, могут содержать следующие инструкции:
Ключи и ссылочная целостность в MySQL и Oracle
Oracle поддерживает первичные, уникальные, внешние ключи в полном объеме. Oracle поддерживает следующие правила ссылочной целостности:
Более сложные правила ссылочной целостности в Oracle можно реализовать через механизм триггеров.
MySQL версии 4.1 (последняя на момент написания статьи стабильная версия) позволяет в командах CREATE / ALTER TABLE задавать фразы REFERENCES / FOREIGN KEY, но в работе никак их не учитывает и реально внешние ключи не создает. Соответственно правила ссылочной целостности, реализуемые через внешние ключи, в MySQL не поддерживаются. И все заботы по обеспечению целостности и непротиворечивости информации в базе MySQL ложатся на плечи разработчиков клиентских приложений.
Первичный ключ, внешний ключ и уникальный ключ при использовании выделенного пула SQL в Azure Synapse Analytics
Узнайте об ограничениях на уровне таблиц в выделенном пуле SQL, включая первичный ключ, внешний ключ и уникальный ключ.
Ограничения таблиц
Выделенный пул SQL поддерживает следующие ограничениях на уровне таблиц:
Синтаксис см. в описании команд ALTER TABLE и CREATE TABLE.
Ограничение FOREIGN KEY в выделенном пуле SQL не поддерживается.
Remarks
Наличие первичного и (или) уникального ключа позволяет обработчику выделенного пула SQL создать оптимальный план выполнения для запроса. Все значения в столбце первичного ключа или столбце уникального ограничения должны быть уникальными.
После создания таблицы с ограничением PRIMARY KEY или UNIQUE в выделенном пуле SQL пользователям нужно убедиться, что все значения в этих столбцах уникальные. Нарушение этого требования приведет к тому, что результат запроса будут неточным. В этом примере показано, как запрос может вернуть неточный результат, если столбец первичного ключа или уникального ограничения содержит повторяющиеся значения.
Примеры
Создайте таблицу в выделенном пуле SQL с первичным ключом:
Создайте таблицу в выделенном пуле SQL с ограничением UNIQUE:
Дальнейшие действия
После создания таблиц для выделенного пула SQL переходите к загрузке данных в таблицу. Дополнительные сведения см. в статье Загрузка данных в выделенный пул SQL.
SQL ключи во всех подробностях
В Интернете полно догматических заповедей о том, как нужно выбирать и использовать ключи в реляционных базах данных. Иногда споры даже переходят в холивары: использовать естественные или искусственные ключи? Автоинкрементные целые или UUID?
Прочитав шестьдесят четыре статьи, пролистав разделы пяти книг и задав кучу вопросов в IRC и StackOverflow, я (автор оригинальной статьи Joe «begriffs» Nelson), как мне кажется, собрал куски паззла воедино и теперь смогу примирить противников. Многие споры относительно ключей возникают, на самом деле, из-за неправильного понимания чужой точки зрения.
Содержание
Что же такое «ключи»?
Забудем на минуту о первичных ключах, нас интересует более общая идея. Ключ — это колонка (column) или колонки, не имеющие в строках дублирующих значений. Кроме того, колонки должны быть неприводимо уникальными, то есть никакое подмножество колонок не обладает такой уникальностью.
Для примера рассмотрим таблицу для подсчёта карт в карточной игре:
Если мы отслеживаем одну колоду (то есть без повторяющихся карт), то сочетание рубашки и лица уникально и нам бы не хотелось вносить в таблицу одинаковые рубашку и лицо дважды, потому что это будет избыточно. Если карта есть в таблице, то мы видели её, в противном случае — не видели.
Мы можем и должны задать базе данных это ограничение, добавив следующее:
Сами по себе ни suit (рубашка), ни face (лицо) не являются уникальными, мы можем увидеть разные карты с одинаковыми рубашкой или лицом. Поскольку (suit, face) уникально, а отдельные колонки не уникальны, можно утверждать, что их сочетание неприводимо, а (suit, face) является ключом.
В более общей ситуации, когда нужно отслеживать несколько колод карт, можно добавить новое поле и записывать сколько раз мы видели карту:
Ограничения уникальности
В PostgreSQL предпочтительным способом добавления ограничения уникальности является его прямое объявление, как в нашем примере. Использование индексов для соблюдения ограничения уникальности может понадобится в отдельных случаях, но не стоит обращаться к ним напрямую. Нет необходимости в ручном создании индексов для колонок, уже объявленных уникальными; такие действия будут просто дублировать автоматическое создание индекса.
Также в таблице без проблем может быть несколько ключей, и мы должны объявить их все, чтобы соблюдать их уникальность в базе данных.
Вот два примера таблиц с несколькими ключами.
Ради краткости в примерах отсутствуют любые другие ограничения, которые были бы на практике. Например, у карт не должно быть отрицательное число просмотров, и значение NULL недопустимо для большинства рассмотренных колонок (за исключением колонки max_income для налоговых групп, в которой NULL может обозначать бесконечность).
Любопытный случай первичных ключей
То, что в предыдущем разделе мы назвали просто «ключами», обычно называется «потенциальными ключами» (candidate keys). Термин «candidate» подразумевает, что все такие ключи конкурируют за почётную роль «первичного ключа» (primary key), а оставшиеся назначаются «альтернативными ключами» (alternate keys).
Потребовалось какое-то время, чтобы в реализациях SQL пропало несоответствие ключей и реляционной модели, самые ранние базы данных были заточены под низкоуровневую концепцию первичного ключа. Первичные ключи в таких базах требовались для идентификации физического расположения строки на носителях с последовательным доступом к данным. Вот как это объясняет Джо Селко:
Термин «ключ» означал ключ сортировки файла, который был нужен для выполнения любых операций обработки в последовательной файловой системе. Набор перфокарт считывался в одном и только в одном порядке; невозможно было «вернуться назад». Первые накопители на магнитных лентах имитировали такое же поведение и не позволяли выполнять двунаправленный доступ. Т.е., первоначальный Sybase SQL Server для чтения предыдущей строки требовал «перемотки» таблицы на начало.
В современном SQL не нужно ориентироваться на физическое представление информации, таблицы моделируют связи и внутренний порядок строк вообще не важен. Однако, и сейчас SQL-сервер по умолчанию создаёт кластерный индекс для первичных ключей и, по старой традиции, физически выстраивает порядок строк.
В большинстве баз данных первичные ключи сохранились как пережиток прошлого, и едва ли обеспечивают что-то, кроме отражения или определения физического расположения. Например, в таблице PostgreSQL объявление первичного ключа автоматически накладывает ограничение NOT NULL и определяет внешний ключ по умолчанию. К тому же первичные ключи являются предпочтительными столбцами для оператора JOIN.
Первичный ключ не отменяет возможности объявления и других ключей. В то же время, если ни один ключ не назначен первичным, то таблица все равно будет нормально работать. Молния, во всяком случае, в вас не ударит.
Нахождение естественных ключей
Рассмотренные выше ключи называются «естественными», потому что они являются свойствами моделируемого объекта интересными сами по себе, даже если никто не стремится сделать из них ключ.
Первое, что стоит помнить при исследовании таблицы на предмет возможных естественных ключей — нужно стараться не перемудрить. Пользователь sqlvogel на StackExchange даёт следующий совет:
У некоторых людей возникают сложности с выбором «естественного» ключа из-за того, что они придумывают гипотетические ситуации, в которых определённый ключ может и не быть уникальным. Они не понимают самого смысла задачи. Смысл ключа в том, чтобы определить правило, по которому атрибуты в любой момент времени должны быть и всегда будут уникальными в конкретной таблице. Таблица содержит данные в конкретном и хорошо понимаемом контексте (в «предметной области» или в «области дискурса») и единственное значение имеет применение ограничения в этой конкретной области.
Практика показывает, что нужно вводить ограничение по ключу, когда колонка уникальна при имеющихся значениях и будет оставаться такой при вероятных сценариях. А при необходимости ограничение можно устранить (если это вас беспокоит, то ниже мы расскажем о стабильности ключа.)
Например, база данных членов хобби-клуба может иметь уникальность в двух колонках — first_name, last_name. При небольшом объёме данных дубликаты маловероятны, и до возникновения реального конфликта использовать такой ключ вполне разумно.
С ростом базы данных и увеличением объёма информации, выбор естественного ключа может стать сложнее. Хранимые нами данные являются упрощением внешней реальности, и не содержат в себе некоторые аспекты, которыми различаются объекты в мире, такие как их изменяющиеся со временем координаты. Если у объекта отсутствует какой-либо код, то как различить две банки с напитком или две коробки с овсянкой, кроме как по их расположению в пространстве или по небольшим различиям в весе или упаковке?
Именно поэтому органы стандартизации создают и наносят на продукцию различительные метки. На автомобилях штампуется Vehicle Identification Number (VIN), в книгах печатается ISBN, на упаковке пищевых товаров есть UPC. Вы можете возразить, что эти числа не кажутся естественными. Так почему же я называю их естественными ключами?
Естественность или искусственность уникальных свойств в базе данных относительна к внешнему миру. Ключ, который при своём создании в органе стандартизации или государственном учреждении был искусственным, становится для нас естественным, потому что в целом мире он становится стандартом и/или печатается на объектах.
Существует множество отраслевых, общественных и международных стандартов для различных объектов, в том числе для валют, языков, финансовых инструментов, химических веществ и медицинских диагнозов. Вот некоторые из значений, которые часто используются в качестве естественных ключей:
Искусственные ключи
С учётом того, что ключ – это колонка, в каждой строке которой находятся уникальные значения, одним из способов его создания является жульничество – в каждую строку можно записать выдуманные уникальные значения. Это и есть искусственные ключи: придуманный код, используемый для ссылки на данные или объекты.
Очень важно то, что код генерируется из самой базы данных и неизвестен никому, кроме пользователей базы данных. Именно это отличает искусственные ключи от стандартизированных естественных ключей.
Преимущество естественных ключей заключается в защите от дублирования или противоречивости строк таблицы, искусственные же ключи полезны потому, что они позволяют людям или другим системам проще ссылаться на строку, а также повышают скорость операций поиска и объединения, так как не используют сравнения строковых (или многостолбцовых) ключей.
Суррогаты
Искусственные ключи используются в качестве привязки – вне зависимости от изменения правил и колонок, одну строку всегда можно идентифицировать одинаковым способом. Искусственный ключ, используемый для этой цели, называется «суррогатным ключом» и требует особого внимания. Суррогаты мы рассмотрим ниже.
Не являющиеся суррогатами искусственные ключи удобны для ссылок на строку снаружи базы данных. Искусственный ключ кратко идентифицирует данные или объект: он может быть указан как URL, прикреплён к счёту, продиктован по телефону, получен в банке или напечатан на номерном знаке. (Номерной знак автомобиля для нас является естественным ключом, но разработан государством как искусственный ключ.)
Искусственные ключи нужно выбирать, учитывая возможные способы их передачи, чтобы минимизировать опечатки и ошибки. Надо учесть, что ключ могут произносить, читать напечатанным, отправлять по SMS, читать написанным от руки, вводить с клавиатуры и встраивать в URL. Дополнительно, некоторые искусственные ключи, например, номера кредитных карт, содержат контрольную сумму, чтобы при возникновении определённых ошибок их можно было хотя бы распознать.
Эта функция является обратной самой себе (т.е. pseudo_encrypt(pseudo_encrypt(x)) = x ). Точное воспроизведение функции является своего рода безопасностью через неясность, и если кто-нибудь догадается, что вы использовали сеть Фейстеля из документации PostgreSQL, то ему будет легко получить исходную последовательность. Однако вместо (((1366 * r1 + 150889) % 714025) / 714025.0) можно использовать другую функцию с областью значений от 0 до 1, например, просто поэкспериментировать с числами в предыдущем выражении.
Вот, как использовать pseudo_encrypt:
В предыдущем примере для short_id использовались целые значения обычного размера, для bigint есть другие функции Фейстеля, например XTEA.
Ещё один способ запутать последовательность целых чисел заключается в преобразовании её в короткие строки. Попробуйте воспользоваться расширением pg_hashids:
Здесь снова будет быстрее хранить в таблице сами целые числа и преобразовывать их по запросу, но замерьте производительность и посмотрите, имеет ли это смысл на самом деле.
Теперь, чётко разграничив смысл искусственных и естественных ключей, мы видим, что споры «естественные против искусственных» являются ложной дихотомией. Искусственные и естественные ключи не исключают друг друга! В одной таблице могут быть и те, и другие. На самом деле, таблица с искусственным ключом должна обеспечивать и естественный ключ, за редким исключением, когда не существует естественного ключа (например, в таблице кодов купонов):
Если у вас есть искусственный ключ и вы не объявляете естественные ключи, когда они существуют, то оставляете последние незащищёнными:
Единственным аргументом против объявления дополнительных ключей является то, что каждый новый несёт за собой ещё один уникальный индекс и увеличивает затраты на запись в таблицу. Конечно, зависит от того, насколько вам важна корректность данных, но, скорее всего, ключи все же стоит объявлять.
Также стоит объявлять несколько искусственных ключей, если они есть. Например, у организации есть кандидаты на работу (Applicants) и сотрудники (Employees). Каждый сотрудник когда-то был кандидатом, и относится к кандидатам по своему собственному идентификатору, который также должен быть и ключом сотрудника. Ещё один пример, можно задать идентификатор сотрудника и имя логина как два ключа в Employees.
Суррогатные ключи
Как уже упоминалось, важный тип искусственного ключа называется «суррогатный ключ». Он не должен быть кратким и передаваемым, как другие искусственные ключи, а используется как внутренняя метка, всегда идентифицирующая строку. Он используется в SQL, но приложение не обращается к нему явным образом.
Если вам знакомы системные колонки (system columns) из PostgreSQL, то вы можете воспринимать суррогаты почти как параметр реализации базы данных (вроде ctid), который однако никогда не меняется. Значение суррогата выбирается один раз для каждой строки и потом никогда не изменяется.
Не делайте суррогатные ключи «естественными». Как только вы покажете значение суррогатного ключа конечным пользователям, или, что хуже, позволите им работать с этим значением (в частности через поиск), то фактически придадите ключу значимость. Потом показанный ключ из вашей базы данных может стать естественным ключом в чьей-то чужой БД.
Принуждение внешних систем к использованию других искусственных ключей, специально предназначенных для передачи, позволяет нам при необходимости изменять эти ключи в соответствии с меняющимися потребностями, в то же время поддерживая внутреннюю целостность ссылок с помощью суррогатов.
Автоинкрементные bigint
Однако, я считаю, что автоинкрементное целое плохой выбор для суррогатных ключей. Такое мнение непопулярно, поэтому позвольте мне объясниться.
Недостатки последовательных ключей:
Давайте рассмотрим другой вариант: использование больших целых чисел (128-битных), генерируемых в соответствии со случайным шаблоном. Алгоритмы генерации таких универсальных уникальных идентификаторов (universally unique identifier, UUID) имеют чрезвычайно малую вероятность выбора одного значения дважды, даже при одновременном выполнении на двух разных процессорах.
В таком случае, UUID кажутся естественным выбором для использования в качестве суррогатных ключей, не правда ли? Если вы хотите пометить строки уникальным образом, то ничто не сравнится с уникальной меткой!
Так почему же все не пользуются ими в PostgreSQL? На это есть несколько надуманных причин и одна логичная, которую можно обойти, и я представлю бенчмарки, чтобы проиллюстрировать свое мнение.
Для начала, расскажу о надуманных причинах. Некоторые люди думают, что UUID — это строки, потому что они записываются в традиционном шестнадцатеричном виде с дефисом: 5bd68e64-ff52-4f54-ace4-3cd9161c8b7f. Действительно, некоторые базы данных не имеют компактного (128-битного) типа uuid, но в PostgreSQL он есть и имеет размер двух bigint, т.е., по сравнению с объёмом прочей информации в базе данных, издержки незначительны.
Ещё UUID незаслуженно обвиняется в громоздкости, но кто будет их произносить, печатать или читать? Мы говорили, что это имеет смысл для показываемых искусственных ключей, но никто (по определению) не должен увидеть суррогатный UUID. Возможно, с UUID будет иметь дело разработчик, запускающий команды SQL в psql для отладки системы, но на этом всё. А разработчик может ссылаться на строки и с помощью более удобных ключей, если они заданы.
Реальная проблема с UUID в том, что сильно рандомизированные значения приводят к увеличению объёма записи (write amplification) из-за записей полных страниц в журнал с упреждающей записью (write-ahead log, WAL). Однако, на самом деле снижение производительности зависит от алгоритма генерации UUID.
Давайте измерим write amplification. По правде говоря, проблема в старых файловых системах. Когда PostgreSQL выполняет запись на диск, она изменяет «страницу» на диске. При отключении питания компьютера большинство файловых систем всё равно сообщит об успешной записи ещё до того, как данные безопасно сохранились на диске. Если PostgreSQL наивно воспримет такое действие завершённым, то при последующей загрузке системы база данных будет повреждена.
Раз PostgreSQL не может доверять большинству ОС/файловых систем/конфигураций дисков в вопросе обеспечения неразрывности, база данных сохраняет полное состояние изменённой дисковой страницы в журнал с упреждающей записью (write-ahead log), который можно будет использовать для восстановления после возможного сбоя. Индексирование сильно рандомизированных значений наподобие UUID обычно затрагивает кучу различных страниц диска и приводит к записи полного размера страницы (обычно 4 или 8 КБ) в WAL для каждой новой записи. Это так называемая полностраничная запись (full-page write, FPW).
Некоторые алгоритмы генерации UUID (такие, как «snowflake» от Twitter или uuid_generate_v1() в расширении uuid-ossp для PostgreSQL) создают на каждой машине монотонно увеличивающиеся значения. Такой подход консолидирует записи в меньшее количество страниц диска и снижает FPW.
Давайте измерим влияние FPW для различных алгоритмов генерации UUID, а также исследуем статистику WAL. Я использовал следующую конфигурацию для замера.
Перед тек, как добавить UUID в каждую таблицу, находим текущую позицию write-ahead log.
Я использовал такую позицию, чтобы получить статистику об использовании WAL после проведения бенчмарка. Так мы получим статистику событий, выполняемых последовательно после начальной позиции:
Я провёл тесты трёх сценариев:
И вот результаты замеров скорости:
График скорости вставки UUID
Вот статистика WAL для каждого из способов:
Результаты подтверждают, что gen_random_uuid создаёт существенную активность в WAL из-за полностраничных образов (full-page images, FPI), а другие способы этим не страдают. Конечно, в третьем методе я просто запретил базе данных делать это. Однако запрет FPW совсем не то, что стоило бы использовать в реальности, если только вы не полностью уверены в файловой системе и конфигурации дисков. В этой статье утверждается, что ZFS может быть безопасным для отключения FPW, но пользуйтесь им с осторожностью.
Явным победителем в моём бенчмарке оказался uuid_generate_v1() – он быстр и не замедляется при накоплении строк. Расширение uuid-ossp по умолчанию установлено в таких облачных базах данных, как RDS и Citus Cloud, и будет доступно без дополнительных усилий.
В документация есть предупреждение о uuid_generate_v1:
В нём используется MAC-адрес компьютера и метка времени. Учитывайте, что UUID такого типа раскрывают информацию о компьютере, который создал идентификатор, и время его создания, что может быть неприемлемым, когда требуется высокая безопасность.
Итоги и рекомендации
Теперь, когда мы познакомились с различными типами ключей и вариантами их использования, я хочу перечислить мои рекомендации по применению их в ваших базах данных.
Для каждой таблицы:
Такой подход обеспечивает стабильность внутренних ключей, в то же время допуская и даже защищая естественные ключи. К тому же, видимые искусственные ключи не становятся к чему-либо привязанными. Правильно во всем разобравшись, можно не зацикливаться только на «первичных ключах» и пользоваться всеми возможностями применения ключей.
Обсуждать подобные профессиональные вопросы мы предлагаем на наших конференциях. Если у вас за плечами большой опыт в ИТ-сфере, наболело, накипело и хочется высказаться, поделиться опытом или где-то попросить совета, то на майском фестивале конференций РИТ++ будут для этого все условия, 8 тематических направлений начиная от фронтенда и мобильной разработки, и заканчивая DevOps и управлением. Подать заявку на выступление можно здесь.
1.2.5. Первичный и внешний ключ
Вот так вот незаметно мы подошли к очень важной теме – первичных и внешних ключей. Если первые используются почти всеми, то вторые почему-то игнорируются. А зря. Внешние ключи – это не проблема, это реальная помощь в целостности данных.
1.2.5. Первичный ключ
Мы уже достаточно много говорили про ключевые поля, но ни разу их не использовали. Самое интересное, что все работало. Это преимущество, а может недостаток базы данных Microsoft SQL Server и MS Access. В таблицах Paradox такой трюк не пройдет и без наличия ключевого поля таблица будет доступна только для чтения.
В какой-то степени ключи являются ограничениями, и их можно было рассматривать вместе с оператором CHECK, потому что объявление происходит схожим образом и даже используется оператор CONSTRAINT. Давайте посмотрим на этот процесс на примере. Для этого создадим таблицу из двух полей «guid» и «vcName». При этом поле «guid» устанавливается как первичный ключ:
Самое вкусное здесь это строка CONSTRAINT. Как мы знаем, после этого ключевого слова идет название ограничения, и объявления ключа не является исключением. Для именования первичного ключа, я рекомендую использовать именование типа PK_имя, где имя – это имя поля, которое должно стать главным ключом. Сокращение PK происходит от Primary Key (первичный ключ).
После этого, вместо ключевого слова CHECK, которое мы использовали в ограничениях, стоит оператор PRIMARY KEY, Именно это указывает на то, что нам необходима не проверка, а первичный ключ. В скобках указывается одно, или несколько полей, которые будут составлять ключ.
Помните, что в ключевом поле не может быть одинакового значения у двух строк, в этом ограничение первичного ключа идентично ограничению уникальности. Это значит, что если сделать поле для хранения фамилии первичным ключом, то в такую таблицу нельзя будет записать двух Ивановых с разными именами. Это нарушает ограничение первичного ключа. Именно поэтому ключи являются ограничениями и объявляются также как и ограничение CHECK. Но это не верно только для первичных ключей и вторичных с уникальностью.
В данном примере, в качестве первичного ключа выступает поле типа uniqueidentifier (GUID). Значение по умолчанию для этого поля – результат выполнения серверной процедуры NEWID.
Только один первичный ключ может быть создан для таблицы
Для простоты примеров, в качестве ключа желательно использовать численный тип и если позволяет база данных, то будет лучше, если он будет типа «autoincrement» (автоматически увеличивающееся/уменьшающееся число). В MS SQL Server таким полем является IDENTITY, а в MS Access это поле типа «счетчик».
Следующий пример показывает, как создать таблицу товаров, в которой в качестве первичного ключа выступает целочисленное поле с автоматическим увеличением:
Именно такой тип ключа мы будем использовать чаще всего, потому что в ключевом поле будут храниться легкие для восприятия числа и с ними проще и нагляднее работать.
Первичный ключ может состоять из более, чем одной колонки. Следующий пример создает таблицу, в которой поля «id» и «Товар» образуют первичный ключ, а значит, будет создан индекс уникальности на оба поля:
Очень часто программисты создают базу данных с ключевым полем в виде целого числа, но при этом в задаче четко стоит, что определенные поля должны быть уникальными. А почему не создать сразу первичный ключ из тех полей, которые должны быть уникальны и не надо будет создавать отдельные решения для данной проблемы.
Единственный недостаток первичного ключа из нескольких колонок – проблемы создания связей. Тут приходиться выкручиваться различными методами, но проблема все же решаема. Достаточно только ввести поле типа uniqueidentifier и производить связь по нему. Да, в этом случае у нас получаются уникальными первичный ключ и поле типа uniqueidentifier, но эта избыточность в результате не будет больше, чем та же таблица, где первичный ключ uniqueidentifier, а на поля, которые должны быть уникальными установлено ограничение уникальности. Что выбрать? Зависит от конкретной задачи и от того, с чем вам удобнее работать.
1.2.6. Внешний ключ
Внешний ключ также является ограничением CONSTRAINT и отображает связь между двумя таблицами. Допустим, что у вас есть две таблицы:
У одного человека может быть несколько телефонов, поэтому мы разделили хранение данных в разные таблицы. На рисунке 1.4 визуально показана связь между двумя таблицами. Если вы уже работали со связанными таблицами, то этого для вас будет достаточно. Если вы слышите о связях впервые, то попробуем посмотреть на проблему поближе.
Для примера возьмем таблицу из трех человек. В таблице 1.3 показано содержимое таблицы «Names». Здесь всего три строки и у каждой свой уникальный главный ключ. Для уникальности, когда будем создавать таблицу, сделаем ключ автоматически увеличиваемым полем.
Таблица 1.3 Содержимое таблицы Names
Главный ключ | Фамилия |
1 | Петров |
2 | Иванов |
3 | Сидоров |
Таблица 1.4. Содержимое таблицы Phones
Главный ключ | Внешний ключ | Телефон |
1 | 1 | 678689687 |
2 | 1 | 2324234 |
3 | 2 | 324234 |
4 | 3 | 32432423 |
5 | 3 | 2 |
6 | 3 | 12312312 |
В таблице 1.4 находится пять номеров телефонов. В поле главный ключ также уникальный главный ключ, которой также можно сделать автоматически увеличиваемым. Вторичный ключ – это связь с главным ключом таблицы Names. Как работает эта связь? У Петрова в таблице Names в качестве главного ключа стоит число 1. В таблице Phones во вторичном ключе ищем число 1 и получаем номера телефонов Петрова. То же самое и с остальными записями. Визуально связь можно увидеть на рисунке 1.5.
Такое хранение данных очень удобно. Если бы не было возможности создавать связанные таблицы, то в таблице Names пришлось бы забивать все номера телефонов в одно поле. Это неудобно с точки зрения использования, поддержки и поиска данных.
Можно создать в таблице несколько полей Names, но возникает вопрос – сколько. У одного человека может быть только 1 телефон, а у меня, например, их 3, не считая рабочих. Большое количество полей приводит к избыточности данных.
Можно для каждого телефона в таблице Names заводить отдельную строку с фамилией, но это легко только для такого простого примера, когда нужно вводить только фамилию и легко можно внести несколько записей для Петрова с несколькими номерами телефонов. А если полей будет 10 или 20? Итак, создание двух таблиц связанных внешним ключом можно увидеть в листинге 1.6.
Листинг 1.6. Создание таблиц связанных внешним ключом
Внимательно изучите содержимое листинга. Он достаточно интересен, потому что использует некоторые операторы, которые мы уже рассмотрели и дополнительный пример не помешает. Для обеих таблиц создается ключевое поле, которое стоит первым, имеет тип int и автоматически увеличивается, начиная с 1 с приращением в единицу. Ключевое поле делается главным ключом с помощью ограничение CONSTRAINT.
В описании таблицы Phones последняя строка содержит новое для нас объявление, а именно – объявление внешнего ключа с помощью оператора FOREIGN KEY. Как видите, это тоже ограничение и чуть позже вы увидите почему. В скобках указывается поле таблицы, которое должно быть связано с другой таблицей. После этого идет ключевое слово REFERENCES (ссылка), имя таблицы, с которой должна быть связь (Names) и в скобках имя поля («idName»). Таким образом, мы навели связь, которая отображена на рисунке 1.4.
Внешний ключ может ссылаться только на первичный ключ другой таблицы или на ограничение уникальности. Это значит, что после ключевого слова REFERENCES должно быть имя таблицы и в скобках можно указывать только первичный ключ или поле с ограничением UNIQUE. Другие поля указывать нельзя.
Теперь, если можно наполнять таблицы данными. Следующие три команды добавляют три фамилии, которые мы видели в таблице 1.3:
Если вы уже работали с SQL то сможете добавить записи и для таблицы телефонов. Я опущу эти команды, а вы можете увидеть их в файле foreign_keys.sql директории Chapter1 на компакт диске.
Наша задача сейчас увидеть, в чем заключаются ограничительные действия внешнего ключа, давайте разберемся. Мы указали явную связь между двумя полями в разных таблицах. Если попытаться добавить в таблицу телефонов запись с идентификатором в поле «idName», не существующим в одноименном поле (имя можно было сделать и другим) таблице с фамилиями, то произойдет ошибка. Это нарушит связь между двумя таблицами, а ограничение внешнего ключа не позволит существовать записям без связи.
Ограничение действует и при изменении или удалении записей. Например, если попытаться удалить строку с фамилией Петров, то произойдет ошибка ограничения внешнего ключа. Нельзя удалять записи, для которых существуют внешне связанные строки. Для начала, нужно удалить все телефоны для данной записи и только после этого будет возможно удаление самой строки с фамилией Петров.
Во время создания внешнего ключа, можно указать ON DELETE CASCADE или ON UPDATE CASCADE. В этом случае, если удалить запись Петрова из таблице Names или изменить идентификатор, то все записи в таблице Phones, связанные со строкой Петрова будут автоматически обновлены. Никогда. Нет, нужно написать большими буквами: НИКОГДА не делайте этого. Все должно удаляться или изменяться вручную. Если пользователь случайно удалит запись из таблицы Names, то удаляться и соответствующие телефоны. Смысл тогда создавать внешний ключ, если половина его ограничительных возможностей исчезает! Все необходимо делать только вручную, а идентификаторы изменять не рекомендуется вообще никогда.
Удаление самих таблиц также должно начинаться с подчиненной таблицы, то есть с Phones, и только потом можно удалить главную таблицу Names.
Напоследок покажу, как красиво получить соответствие имен и телефонов из двух таблиц:
Более подробно о подобных запросах мы поговорим в главе 2. Сейчас же я привел пример только для того, чтобы вы увидели мощь связанных таблиц.
Таблица может содержать до 253 внешних ключей, что вполне достаточно даже для построения самых сложных баз данных. Лично мне приходилось работать с базами данных, где количество внешних ключей не превышало 7 на одну таблицу. Если больше, то скорей всего база данных спроектирована неверно, хотя бывают и исключения.
Сама таблица также может иметь максимум 253 внешних ключей. Внешние ключи в таблице встречаются реже, в основном не более 3. Чаще всего в таблице может быть много ссылок на другие таблицы.
Внешний ключ может ссылаться на ту же таблицу, в которой он создается. Например, у вас есть таблица должностей в организации, как показано в таблице 1.5. Таблица состоит из трех полей: первичный ключ, внешний ключ и наименование должности. В любой организации может быть множество должностей, но вполне логичным будет в одной таблице отобразить их названия и структуру подчинения. Для этого внешний ключ нужно связать с первичным ключом таблицы должностей.
Таблица 1.5. Таблица с внутренней связью
Главный ключ | Внешний ключ | Должность |
1 | NULL | Генеральный директор |
2 | 1 | Коммерческий директор |
3 | 1 | Директор по общим вопросам |
4 | 2 | Начальник отдела снабжения |
5 | 2 | Начальник отдела сбыта |
6 | 3 | Начальник отдела кадров |
В результате мы получаем, что у генерального директора внешний ключ нулевой, т.е. эта должность стоит во главе всех остальных. У коммерческого директора и директора по общим вопросам внешний ключ указывает на строку генерального директора. Это значит, что эти две должности подчиняются непосредственно генеральному директору. И так далее.
Посмотрим, как можно создать все это в виде SQL запроса:
Как видите, внешний ключ просто ссылается на ту же таблицу, которую мы создаем. На компакт диске, в директории Chapter1 можно увидеть в файле foreign_keys_to_self.sql пример создания этой таблицы, наполнения его данными и отображения должностей с учетом их подчинения. В следующей главе мы рассмотрим возможность работы с такими таблицами более подробно.
Отношение один к одному
Пока что мы рассмотрели классическую связь, когда одной строке основной таблицы данных соответствует одна строка из связанной таблицы. Такая связь называется один ко многим. Но существуют и другие связи, и сейчас мы рассмотрим еще одну – один к одному, когда одна запись основной таблице связана с одной записью другой. Чтобы это реализовать, достаточно связать первичные ключи обеих таблиц. Так как первичные ключи не могут повторяться, то в обеих таблицах связанными могут быть только одна строка.
Следующий пример создает две таблицы, у которых создана связь между первичными ключами:
Внешний ключ нужен только у одной из таблиц. Так как связь идет один к одному, то не имеет значения, в какой таблице создать его.
Многие ко многим
Самая сложная связь – многие ко многим, когда много записей из одной таблицы соответствует многим записям из другой таблицы. Чтобы такое реализовать, двух таблиц мало, необходимо три таблицы.
Для начала нужно понять, когда может использоваться связь многие ко многим? Допустим, что у вас есть две таблицы: список жителей дома и список номеров телефона. В одной квартире может быть более одного номера, а значит, одной фамилии может принадлежать два телефона. Получается, связь один ко многим. С другой стороны, в одной квартире может быть две семьи (коммунальная квартира или просто квартиросъемщик, который пользуется телефоном владельца), а значит, связь между телефоном и жителем тоже один ко многим. И самый сложный вариант – в коммунальной квартире находиться два телефона. В этом случае обоими номерами пользуются несколько жителей квартире. Вот и получается, что «много» семей может пользоваться «многими» телефонами (связь многие ко многим).
Как реализовать связь многие ко многим? На первый взгляд, в реляционной модели это невозможно. Лет 10 назад я долго искал разные варианты и в результате просто создавал одну таблицу, которая была переполнена избыточностью данных. Но однажды, мне досталась одна задача, благодаря которой уже из условия на поверхность вышло отличное решение – нужно создать две таблицы жителей квартир и телефонов и реализовать в них только первичный ключ. Внешние ключи в этой таблице не нужны. А вот связь между таблицами должна быть через третью, связующую таблицу. На первый взгляд это сложно и не понятно, но один раз разобравшись с этим методом, вы увидите всю мощь этого решения.
В таблицах 1.6 и 1.7 показаны примеры таблиц фамилий и телефонов соответственно. А в таблице 1.8 показана связующая таблица.
Таблица 1.6. Таблица фамилий
Ключ | Имя |
1 | Иванов |
2 | Петров |
3 | Сидоров |
Таблица 1.7. Таблица телефонов
Ключ | Телефон |
1 | 68768678 |
2 | 658756785 |
3 | 567575677 |
Таблица 1.8. Таблица телефонов
Ключ | Связь с именем | Связь с телефоном |
1 | 1 | 1 |
2 | 1 | 2 |
3 | 2 | 1 |
4 | 2 | 3 |
5 | 3 | 3 |
Давайте теперь посмотрим, какая будет логика поиска данных при связи многие ко многим. Допустим, что нам нужно найти все телефоны, которые принадлежат Иванову. У Иванова первичный ключ равен 1. Находим в связующей таблице все записи, у которых поле «Связь с именем» равно 1. Это будут записи 1 и 2. В этих записях в поле «Связь с телефоном» находятся идентификаторы 1 и 2 соответственно, а значит, Иванову принадлежат номера из таблицы телефонов, которые расположены в строках 1 и 2.
Теперь решим обратную задачу – определим, кто имеет доступ к номеру телефона 567575677. Этот номер в таблице телефонов имеет ключ 3. Ищем все записи в связующей таблице, где в поле «Связь с телефоном» равно 3. Это записи с номерами 4 и 5, которые в поле «Связь с именем» содержат значения 2 и 3 соответственно. Если теперь посмотреть на таблицу фамилий, то вы увидите под номерами 2 и 3 Петрова и Сидорова. Значит, именно эти два жителя пользуются телефоном с номером 567575677.
Просмотрите все три таблицы и убедитесь, что вы поняли, какие номера телефонов принадлежат каким жителям и наоборот. Если вы увидите эту связь, то поймете, что она проста, как три копейки и сможете быстро реализовать ее в своих проектах.
У связующей таблицы два внешних ключа, которые связываются с таблицами имен и телефонов и один первичный ключ, который обеспечивает уникальность записей.
В качестве первичного ключа я выбрал GUID поле, потому что для решения именно этой задачи он более удобен. Дело в том, что нам нужно вставлять записи в две таблицы и в обоих случаях нужно указывать один и тот же ключ. Значение GUID можно сгенерировать, а потом можно использовать при вставке данных в обе таблицы.
Вы можете использовать в качестве ключа и автоматически увеличиваемое поле, но в этом случае проблему решить немного сложнее, точнее сказать, решать проблему неудобно. Например, добавляя номер телефона, необходимо сначала вставить соответствующую строку в таблицу, потом найти ее, определить ключ, который был назначен строке, и после этого уже наводить связь.
На данном этапе мы ограничиваемся только созданием таблиц, а в разделе 2.8 мы вернемся к этой теме и научимся и научимся работать со связанными таблицами. Работа со связью один к одному и один ко многим отличается не сильно, потому что в этой схеме участвует только две таблицы. Связь многие ко многим немного сложнее из-за связующей таблицы, поэтому мы ее рассмотрим отдельно в разделе 2.27.