за счет чего возникают неосновные носители в полупроводниках
pn переход принцип работы. Основные и неосновные носители зарядов.
pn переход это тонкая область, которая образуется в том месте, где контактируют два полупроводника разного типа проводимости. Каждый из этих полупроводников электрически нейтрален. Основным условием является то что в одном полупроводнике основные носители заряда это электроны а в другом дырки.
При контакте таких полупроводников в результате диффузии зарядов дырка из p области попадает в n область. Она тут же рекомбенирует с одним из электронов в этой области. В результате этого в n области появляется избыточный положительный заряд. А в p области избыточный отрицательный заряд.
Таким же образом один из электронов из n области попадает в p область, где рекомбенирует с ближайшей дыркой. Следствием этого также является образование избыточных зарядов. Положительного в n области и отрицательного в p области.
В результате диффузии граничная область наполняется зарядами, которые создают электрическое поле. Оно будет направлено таким образом, что будет отталкивать дырки находящиеся в области p от границы раздела. И электроны из области n также будут отталкиваться от этой границы.
Если говорить другими словами на границе раздела двух полупроводников образуется энергетический барьер. Чтобы его преодолеть электрон из области n должен обладать энергией больше чем энергия барьера. Как и дырка из p области.
Наряду с движением основных носителей зарядов в таком переходе существует и движение неосновных носителей зарядов. Это дырки из области n и электроны из области p. Они также двигаются в противоположную область через переход. Хотя этому способствует образовавшееся поле, но ток получается, ничтожно мал. Так как количество неосновных носителей зарядов очень мало.
Если к pn переходу подключить внешнюю разность потенциалов в прямом направлении, то есть к области p подвести высокий потенциал, а к области n низкий. То внешнее поле приведет к уменьшению внутреннего. Таким образом, уменьшится энергия барьера, и основные носители заряда смогут легко перемещаться по полупроводникам. Иначе говоря, и дырки из области p и электроны из области n будут двигаться к границе раздела. Усилится процесс рекомбинации и увеличится ток основных носителей заряда.
Если разность потенциалов приложить в обратном направлении, то есть к области p низкий потенциал, а к области n высокий. То внешнее электрическое поле сложится с внутренним. Соответственно увеличится энергия барьера не дающего перемещаться основным носителям зарядов через переход. Другими словами электроны из области n и дырки из области p будут двигаться от перехода к внешним сторонам полупроводников. И в зоне pn перехода попросту не останется основных носителей заряда обеспечивающих ток.
Если обратная разность потенциалов будет чрезмерно высока, то напряжённость поля в области перехода увеличится до тех пор, пока не наступит электрический пробой. То есть электрон ускоренный полем не разрушит ковалентную связь и не выбьет другой электрон и так далее.
О том что такое полупроводник и как он работает
Полупроводниками (seicomnductor) называют вещества, которые по способности проводить электрический ток занимают промежуточное положение между металлами (проводниками) и диэлектриками (изоляторами).
При качественном анализе механизма проводимости полупроводников обычно используется плоскостной моделью кристаллической решетки.
В химически чистых полупроводниках при температуре абсолютного нуля свободных носителей зарядов нет. С повышением температуры валентные электроны приобретают дополнительную тепловую энергию и некоторые из них (электроны с наибольшими скоростями хаотического теплового движения) могут, разорвать связь с атомами и стать свободными носителями зарядов. Атом, потерявший электрон, становится положительно заряженным ионом. Эти ионы не являются носителями зарядов, так как они жестко связаны межатомными силами.
Электропроводность, при которой электрон последовательно занимает дырку у рядом расположенного атома, т.е. в каждый момент времени в веществе преобладает «свободные» дырки, которые переходят от одного соседнего атома к другому, называется дырочной или электропроводностью p-типа (positive). Электропроводность, обусловленная движением свободных (избыточных) электронов между узлами кристаллической решетки, называется электронной или электропроводностью n-типа (negative).
Как уже упоминалось выше, в полупроводниковых приборах практически не используются химически чистые полупроводники, а применяются главным образом полупроводники с примесями, добавление которых приводит к существенному увеличению числа носителей зарядов. Электропроводность таких полупроводников называется примесной.
Рассмотрим механизм образование зарядов, воспользовавшись снова плоскостной моделью кристаллической решетки. Если в четырехвалентный германий добавить пятивалентное вещество, например сурьму, то пятивалентный атом сурьмы четырьмя валентными электронами образует ковалентную связь с четырьмя соседними атомами германия, а пятый валентный электрон атома сурьмы остается «лишним» и может быть достаточно легко отделен от атома. Такие полупроводники обладают электропроводностью n-типа. Примеси, которые отдают исходному полупроводнику свои электроны, называют донорными.
В примесных полупроводниках концентрация носителей зарядов всегда превышает (в 100 раз и более) концентрация носителей зарядов в исходного вещества. Поэтому удельное электрическое сопротивление примесного полупроводника всегда значительно меньше, чем исходного химически чистого. Однако даже в примесном полупроводнике число носителей зарядов намного меньше числа атомов; они составляют не более 10-4 степени % от общего числа атомов.
Дырки перемещаются только в полупроводнике, причем только между соседними атомами. У положительного полюса дырка возникает за счет отрыва электрона от атома и ухода его во внешнюю цепь. Во внешней цепи ток образуется только за счет электронов проводимости. У отрицательного полюса дырка рекомбинирует с электроном, поступившим из внешней цепи.
Направленное движение носителей зарядов может вызываться не только электрическим полем, но и разной их концентрацией в объеме вещества. Процесс направленного движения носителей зарядов, вызванный их неравномерной концентрацией, носит название диффузии носителей зарядов, а соответствующий ток называют диффузионным в отличие от дрейфового тока.
Что такое основные и не основные носители заряда?
В полупроводниках носителями заряда являются электроны и дырки. Отношение их концентраций определяет тип проводимости полупроводника.
Если значительно преобладают электроны, то такой полупроводник называется полупроводником n-типа. Электроны, в этом случае, называются основными носителями заряда, а дырки — неосновными.
Соответственно, если преобладают дырки, то полупроводник является полупроводником p-типа, дырки — основными носителями, а электроны неосновными.
Если положительный потенциал приложен к p-области, то потенциальный барьер понижается (прямое смещение). В этом случае с ростом приложенного напряжения экспоненциально возрастает число основных носителей, способных преодолеть барьер. Как только эти носители миновали p — n-переход, они становятся неосновными. Поэтому концентрация неосновных носителей по обе стороны перехода увеличивается (инжекция неосновных носителей). Одновременно в p- и n-областях через контакты входят равные количества основных носителей, вызывающих компенсацию зарядов инжектированных носителей. В результате возрастает скорость рекомбинации и появляется отличный от нуля ток через переход, который с ростом напряжения экспоненциально возрастает.
Приложение отрицательного потенциала к p-области (обратное смещение) приводит к повышению потенциального барьера. Диффузия основных носителей через переход становится пренебрежимо малой. В то же время потоки неосновных носителей не изменяются (для них барьера не существует). Неосновные носители заряда втягиваются электрическим полем в p—n-переход и проходят через него в соседнюю область (экстракция неосновных носителей).
На добавочный вопрос: при приложении обратного напряжения кроме диффузии неосновные носители «подгоняются» еще и эл. полем
Основные и неосновные носители заряда в полупроводниках
В полупроводниках носителями заряда являются электроны и дырки. Отношение их концентраций определяет тип проводимости полупроводника. Те носители, концентрация которых выше, называют основными носителями заряда, а носители другого типа — неосновными.
Если концентрация электронов значительно превосходит концентрацию дырок, то такой полупроводник называют полупроводником n-типа проводимости. В этом случае основными носителями заряда являются электроны, а неосновными носителями — дырки.
Соответственно, если концентрация дырок выше, чем электронов, то полупроводник называют полупроводником p-типа. В нем основными носителями являются дырки, а неосновными носителями — электроны.
Вопрос
Влияние примесей на носители заряда:
Вывод: донорные примеси отдают лишние валентные электроны, образуя полупроводник н- типа, а акцепторные примеси создают дырки, образуя полупроводник р-типа.
Вопрос
Полупроводниковый диод — полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n-перехода.
p-n-Перехо́д (n — negative — отрицательный, электронный, p — positive — положительный, дырочный), или электронно-дырочный переход — область пространства на стыке двухполупроводниковp- и n-типа, в которой происходит переход от одного типа проводимости к другому. p-n-Переход является основой для полупроводниковых диодов, триодов и других электронных элементов с нелинейной вольт-амперной характеристикой.
Вопрос
Выпрямитель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток.
Выходные параметры выпрямителя:
Коэффициентом пульсации Kп01 называется отношение амплитуды первой гармоники выпрямленного напряжения U01 к среднему значению выпрямленного напряжения U0.
Простейшим выпрямителем является схема однофазного однополупериодного выпрямителя. Графики, поясняющие его работу при синусоидальном входном напряжении Uвх=Uвх maxsin(ωt)
Вопрос
Очевидно, что параметры выпрямителя можно улучшить, если обеспечить протекание тока нагрузки в оба полупериода действия входного напряжения. Этого можно добиться, используя две схемы однополупериодного выпрямления, работающие синхронно и противофазно на единую нагрузку. Такое включение, однако, потребует наличия двух источников первичного напряжения, имеющих общую точку: Uвх1=Uвх maxsin(ωt), Uвх2=Uвх maxsin(ωt+π). Описанная схема называется однофазной двухполупериодной схемой выпрямления со средней точкой
Существенным недостатком схемы двухполупериодного выпрямления со средней точкой является потребность в двух источниках входного напряжения. Такая потребность обусловлена тем, что один из выводов сопротивления нагрузки периодически переключается между двумя источниками напряжения, а другой вывод постоянно подключен к средней точке этих источников.
Вопрос
необходимость в средней точке отпадет, если и второй вывод нагрузки при помощи второй аналогичной диодной схемы будет синхронно и противофазно подключаться к неиспользуемым на соответствующем интервале времени выводам источников питания. Схемотехническая реализация такого метода представлена на рис. 3.4‑9. Эта схема носит название однофазного мостового выпрямителя и является, вероятно, самой распространенной из всех схем выпрямления, предназначенных для работы с однофазными источниками переменных напряжений.
Вопрос
Сглаживающий фильтр — устройство для сглаживания пульсаций после выпрямления переменного тока диодным мостом. Простейшим сглаживающим фильтром являетсяэлектролитический конденсатор большой ёмкости, установленный на схеме параллельно нагрузке, соблюдая полярность конденсатора. Нередко устанавливается параллельно электролитическому конденсатору плёночный (или керамический) для переменного тока ёмкостью 0,01 микрофарады, для устранения помех сети 220.
Сглаживающие фильтры питания предназначены для уменьшения пульсаций выпрямленного напряжения. Принцип работы простой – во время действия полуволны напряжения происходит заряд реактивных элементов (конденсатора, дросселя) от источника – диодного выпрямителя, и их разряд на нагрузку во время отсутствия, либо малого по амплитуде напряжения.
СОБСТВЕННЫЕ И ПРИМЕСНЫЕ ПОЛУПРОВОДНИКИ. ОСНОВНЫЕ И НЕОСНОВНЫЕ НОСИТЕЛИ ЗАРЯДА.
Как и в металлах, электрический ток в полупроводниках связан с дрейфом носителей заряда. Но, если в металлах наличие свободных электронов обусловлено самой природой металлической связи, появление носителей заряда в полупроводниках определяется рядом факторов, важнейшими из которых являются химическая чистота материала и температура. В зависимости от степени чистоты полупроводники подразделяют на собственные и примесные.
Собственный — это такой полупроводник, в котором можно пренебречь влиянием примесей при данной температуре. Согласно зонной теории твердого тела твердого тела для полупроводников характерно наличие не очень широкой (
Произведение является слабой функцией от температуры; поэтому зависимость логарифма концентрации носителей заряда от обратной температуры близка к линейной, причем наклон прямой характеризует ширину запрещенной зоны полупроводника.
Примесный — это такой полупроводник, электрофизические свойства которого в основном определяются примесями.Как правило, примеси создают дополнительные уровни в запрещенной зоне полупроводника. При малой концентрации примесей расстояние между примесными атомами велико, их электронные оболочки не взаимодействуют друг с другом. Вследствие этого примесные энергетические уровни являются дискретными, т. е. не расщепляются в зону, как это имеет место для уровней основных атомов кристаллической решетки.
Если примесные атомы находятся в узлах кристаллической решетки, то их называют примесями замещения, если в междуузлиях — примесями внедрения.
Роль примесей могут играть и всевозможные дефекты структуры. К числу таких дефектов относятся, в первую очередь, вакансии и междуузельные атомы.
Доноры и акцепторы. При малой концентрации примесей вероятность непосредственного перехода электронов от одного примесного атома к другому ничтожно мала. Однако примеси могут либо поставлять электроны в зону проводимости полупроводника, либо принимать их с уровней его валентной зоны. На рис. 7.2 показаны два случая, имеющие наибольшее практическое значение.
1. Примесные уровни, заполненные электронами при отсутствии внешних энергетических воздействий, расположены в запрещенной зоне вблизи нижнего края зоны проводимости. При внешнем возбуждении электроны с примесных уровней могут легко переходить в свободную зону и участвовать в процессе электропроводности. Энергия, необходимая для таких переходов, значительно меньше энергии ионизации собственных атомов полупроводника, т. е. ширины запрещенной зоны. Примеси, поставляющие электроны в зону проводимости полупроводника, называют донорами. При относительно невысоких температурах переходы электронов из валентной зоны в зону проводимости не играют существенной роли. В таких материалах концентрация электронов превышает концентрацию дырок, вследствие чего они получили название полупроводников n-типа. Минимальную энергию, которую необходимо сообщить электрону для перевода его с донорного уровня в зону проводимости, называют энергией ионизации донора (рис.7.2,а).
2. В противоположном случае примесь может внести незаполненные уровни, располагающиеся в запрещенной зоне вблизи от верхнего края («потолка») валентной зоны. Благодаря тепловому возбуждению электроны из валентной зоны полупроводника забрасываются на эти свободные примесные уровни. Ввиду разобщенности атомов примеси, электроны, заброшенные на примесные уровни, не участвуют в электрическом токе. Полупроводник с такой примесью имеет концентрацию дырок большую, чем концентрация электронов, перешедших из валентной зоны в зону проводимости, и его называют полупроводником p-типа, а примеси, захватывающие электроны из валентной зоны полупроводника, — акцепторами.
Минимальную энергию, которую необходимо сообщить электрону валентной зоны, чтобы перевести его на акцепторный уровень, называют энергией ионизации акцептора (рис. 7.2,б).
Примеси замещения, валентность которых превышает валентность основных атомов решетки, проявляют свойства доноров. Кроме мышьяка типичными донорами в кремнии и германии являются фосфор и сурьма.
Примеси замещения, имеющие валентность меньше валентности основных атомов решетки, в ковалентных полупроводниках являются акцепторами. Помимо алюминия акцепторные свойства кремнии и германии проявляют бор, галлий, индий. Энергия ионизации акцепторов численно близка к энергии ионизации доноров.
Основные и неосновные носители заряда. Носители заряда, концентрация которых в данном полупроводнике больше, называют основными, аносители концентрация которых меньше— неосновными. Так, в полупроводнике n-типа электроны являются основными носителями, а дырки — неосновными; в полупроводнике p-типа дырки — основными носителями, а электроны—неосновными. При изменении концентрации примесей в полупроводнике изменяется положение уровня Ферми и концентрация носителей заряда обоих знаков, т. е. электронов и дырок. Однако произведение концентраций электронов и дырок в невырожденном полупроводнике при заданной температуре в условиях термодинамического равновесия есть величина постоянная, не зависящая от содержания примесей.
Если, например, в полупроводнике n-типа увеличить концентрацию доноров, то возрастет число электронов, переходящих в единицу времени с примесных уровней в зону проводимости. Соответственно возрастет скорость рекомбинации носителей заряда и уменьшится равновесная концентрация дырок.
|
часто называют соотношением «действующих масс» для носителей заряда. С его помощью всегда можно найти концентрацию неосновных носителей заряда, если известна концентрация основных.