жидкий хладагент что это
Главный агент в вашем кондиционере
Разбираемся вместе, для чего служит хладагент в системах охлаждения, какие хладагенты бывают и как сократить неизбежные утечки
Кондиционер – это прибор, который осуществляет охлаждение или обогрев воздуха в помещении. В зависимости от конструкции и функциональности различают такие типы приборов как канальные и оконные кондиционеры, мультизональные системы и так далее.
Для чего нужен хладагент?
Кондиционер прочно вошёл в жизни людей XXI века. Основной его функцией является регулирование и поддержание определённой температуры внутри жилых помещений, офисов, автомобилей и так далее. Нужно обеспечивать должный уход и профессиональное обслуживание (при необходимости), чтобы бытовая техника оставалась в рабочем состоянии как можно дольше. Своевременные меры помогут не только увеличить срок использования техники и предотвратить возможные неисправности, но и обойдутся гораздо дешевле, чем ремонт серьёзной поломки.
Характеристика сплит-систем такова. Сплит-система (бытовой настенный кондиционер) состоит из внутреннего и внешнего блоков. Первый блок находится внутри кондиционируемого помещения и выполняет функцию испарения. Второй блок располагается снаружи здания и выполняет функцию конденсатора. Блоки соединяются системой трубок и кабелем.
Любая сплит-система основана на способности вещества отнимать теплоту при кипении и затем отдавать её воздуху. Таким элементом этой системы является фреон, по-другому хладагент хлорфторуглерод. Именно благодаря хладагенту осуществляется кондиционирование воздуха в помещение. Это вещество под воздействием некоторых процессов переходит из жидкого состояния в газообразное и, наоборот, помогая преобразовывать тёплый воздух в холодный.
Виды хладагентов
Обычно хладагент классифицируют по его химическому составу. Он имеет формы R-22, R-12, R-134a, R-407C. Никакого влияние на самочувствие и здоровье человека эти формы не имеют. До недавнего времени наибольшей популярностью пользовался R-22, поскольку он прост в использовании и имеет невысокую цену. Европейские исследования положили конец недолгой эпохе этого фреона. Выяснилось, что причиной образования озоновых дыр в стратосфере во многом является производство хлорсодержащих фреонов.
В связи с неблаготворным влиянием R-22 на обстановку в окружающей среде, странами ООН было принято решение уменьшить производство озоноразрушающего фреона. На данный момент этот хладагент можно встретить лишь в старых моделях кондиционеров. За фреоном R-22 пришёл R-410A, который признан озонобезопасным, на основе многочисленных опытов и исследований. С 2010 года этот хладагент стал использоваться в большинстве сплит-систем, что логично привело к увеличению цены на сервисное обслуживание по их установке.
R-410A предпочтителен не только тем, что он безопасен для окружающей среды. При утечке замена этого хладагента является более экономичной, так как заправку необходимо проводить частично. Хотя обычно для замены фреон полностью сливают. Также R-410A требуется на 20% меньше для заправки сплит-системы, по сравнению с R-22.
Неизбежные утечки и как с ними бороться
По последним статистическим данным в год из системы кондиционирования утекает до 8% фреона. Причины этого могут самые разнообразные. От некачественного монтажа до разгерметизации фреонового контура. Наихудшим итогом утечки фреона может стать тотальная поломка компрессора, которая приведёт либо к замене самого компрессора, либо к полной замене внешнего блока. В итоге от поломки одной детали может пострадать вся сплит-система. Для того, чтобы этого не случилось, нужно хотя бы раз в год проверять кондиционер на наличие возможных неисправностей.
Существуют несколько признаков ухудшения работы системы:
Чтобы предотвратить утечку хладагента, нужно проверять работу кондиционера после каждого использования. Такие нарушения как утечка фреона и образование наледи будут заметны невооружённым глазом. В случае обнаружения неполадок в системе нужно отказаться от использования кондиционера до прибытия мастеров сервисной службы. Даже если поломка критическая, устранить её получится без особых трудностей и последствий для работы системы в будущем.
Когда без ремонта не обойтись
Чаще всего проблема носит локальный характер, поэтому для того, чтобы заправить фреон не нужно полностью разбирать блоки системы. Однако, как показывает практика, бывают редкие случаи, когда проблему неисправности выяснить не так-то просто. Поэтому для выявления поломки и её исправления, технику разбирают и отправляют в ремонтный центр.
Хладагент – важная и неотъемлемая часть сплит-системы. Для долгого и надёжного функционирования бытового кондиционера нужно регулярно наблюдать за состоянием техники, а, главное, – за количеством фреона в системе. Ведь именно хладагент гарантирует качественную конденсацию воздуха внутри помещения. Нужно заблаговременно заботиться о состоянии системы и не доводить дело до критического положения.
ВИДЕО:
При полном и/или частичном копировании данного материала, для последующего размещения его на стороннем ресурсе, обратная, индексируемая ссылка на источник обязательна!
Эволюция холода: хладагенты в современных холодильниках
Хладагент это рабочее вещество холодильной машины, которое при кипении и в процессе испарения отнимает тепло от охлаждаемого объекта, а затем после конденсации передаёт его окружающей среде.
Современные холодильники в основном компрессионные и, как следует из названия, имеют компрессор (а некоторые модели даже два). Кроме этого, конструкция предусматривает испаритель. Меж ними циркулирует хладагент. Сначала сжатый компрессором хладагент, находясь в газообразном состоянии, поступает в конденсатор длинную зигзагообразную трубку. Там он превращается в жидкость и отдаёт тепло окружающей среде. Через специальный регулирующий вентиль жидкий хладагент поступает в испаритель, который находится внутри теплоизолированной морозильной или холодильной камеры. Там давление падает, он начинает кипеть, испаряется, снова превращаясь в газ, отбирая при этом тепло у окружающего воздуха. Камера холодильника охлаждается. Испарившийся хладагент опять сжимается компрессором и попадает в конденсатор. И так цикл повторяется снова и снова. Этот принцип охлаждения используется в большинстве холодильников уже десятки лет.
1 компрессор; 2 нагнетательный трубопровод; 3 конденсатор; 4 фильтр-осушитель; 5 капиллярная трубка; 6 испаритель холодильной камеры; 7 испаритель морозильной камеры; 8 всасывающий трубопровод» src=»http://pics.rbc.ru/img/cnews/2008/02/15/1.jpg»>
Схема компрессионного холодильника:
1 компрессор; 2 нагнетательный трубопровод; 3 конденсатор; 4 фильтр-осушитель; 5 капиллярная трубка; 6 испаритель холодильной камеры; 7 испаритель морозильной камеры; 8 всасывающий трубопровод
Однако есть и другой тип холодильников, пусть и менее популярный сегодня, абсорбционные. Циркуляция рабочих веществ: абсорбента (воды) и хладагента (как правило, аммиака), имеющих разную температуру кипения при атмосферном давлении, осуществляется посредством абсорбции. Аммиак поглощается водой, получившаяся смесь подогревается с помощью электрического или газового нагревателя. При этом происходит выпаривание аммиака, который, испаряясь, потребляет теплоту камеры холодильника, то есть способствует её охлаждению. Абсорбционные холодильники в основном маленькие, однокамерные. Яркий пример такой техники великолукские холодильники «Морозко».
Схема устройства абсорбционного холодильника
Как всё начиналось
Серийное производство холодильников в начале XX века активнее всего развивалось в США. Практически во всех машинах того времени в качестве хладагента использовались аммиак, различные эфиры и некоторые другие весьма токсичные и опасные для человека вещества. поломок таких агрегатов и контакта людей, в частности, с аммиаком высокой концентрации нередки были даже смертельные случаи. Поэтому учёные стали искать другие вещества, которые можно использовать в качестве хладагентов. Так появились фреоны.
Один из первых серийных американских холодильников Frigidaire
Воцарение фреонов
Скрытая угроза
Всё шло прекрасно: и производители, и потребители были довольны. К 1976 году объём производства того же достиг почти 340 тысяч тонн. Определённая часть из этого количества предназначалась как раз для холодильных систем, систем охлаждения воздуха, баночек с аэрозолями Но годы прошлого века стали началом «тяжелых времён» для уже привычных фреонов. Ученые, исследовавшие причины нарушения озонового слоя Земли, пришли к выводу, что многие фреоны наносят ему ощутимый вред. Также оказалось, что фреоны участвуют в возникновении парникового эффекта, потому что задерживают инфракрасное излучение, которое испускает земная поверхность, а следовательно, способствуют глобальному потеплению.
Озоновый слой планеты всё ещё под угрозой, хотя за 20 лет, прошедших с подписания монреальского протокола, есть ощутимые позитивные изменения. Фото сделано спутником NASA
Альтернатива фреонам
Однако и сегодня постоянно ведутся исследования, учёные пытаются синтезировать новые, максимально экологичные, более качественные по своим свойствам хладагенты. Разработкой альтернативных хладагентов озабочены многие государства, вкладывающие значительные финансовые средства в соответствующие исследования. По оценкам специалистов, за последние шесть лет на синтез новых хладагентов было потрачено свыше 2,4 миллиардов долларов.
Синтезированы хладагенты из пропана (R290), этилена (R1150), пропилена (R1270), изобутана (R600a). Производство холодильников, работающих на изобутане, освоили многие производители, причём не только в Европе или в Америке, но и на просторах бывшего СССР. Например, белорусская фирма Atlant предлагает покупателям модель за 15000 рублей, да и остальные свои модели этот производитель «перевёл» на безопасный изобутан.
Примеры моделей с хладагентом R600A:
Объём: 354 литра
Стоимость: 15000 рублей
Объём: 369 литров
Стоимость: 28000 рублей
Объём: 348 литров
Стоимость: 22000 рублей
Фирмой Du Pont был разработан ряд новых смесей хладогентов, известных под марками SUVA MP, SUVA МР39 (R401A), SUVA MP52 (R401C) и некоторые другие.
Увы, пока говорить о идеальном по своим характеристикам хладагенте рано. Сегодня главное то, что удалось разработать хладагенты безопасные для человека и окружающей среды. Именно они и используются в бытовых холодильниках и кондиционерах. Ну, а дальнейшее их совершенствование дело времени.
Как работает холодильное оборудование?
Содержание
Содержание
Вы никогда не задумывались, почему в холодильнике — холодно, и что общего у морозильного шкафа и кондиционера? В этом материале разбираемся, как работает холодильное оборудование.
Замечали, что, когда вы выходите из душа, вам всегда прохладно? Дело в том, что влага при испарении поглощает тепло. А при конденсации, наоборот, тепло выделяется. На этих явлениях и основан принцип действия паровых компрессорных холодильных машин– в них по замкнутому кругу двигается специальная жидкость (хладагент). Хладагент испаряется в испарителе и конденсируется в конденсаторе. При этом испаритель охлаждается, а конденсатор греется.
Чтобы хладагент испарялся и конденсировался в нужных местах, в холодильном контуре должны присутствовать еще два элемента – компрессор и дросселирующее устройство.
Компрессор сжимает газообразный хладагент в конденсаторе, где он под действием высокого давления переходит в жидкую форму, выделяя тепло. А дросселирующее устройство (капиллярная трубка или терморегулирующий вентиль) затрудняет движение хладагента и поддерживает высокое давление в конденсаторе. После дросселя давление в контуре намного ниже, и попавший туда хладагент начинает испаряться внутри испарителя, поглощая тепло. Далее он, уже в газообразном виде, снова попадает в компрессор, и цикл повторяется.
Многие холодильные установки комплектуются дополнительными элементами.
Фильтр-осушитель устанавливается перед дросселирующим устройством. Его задачей является извлечение из хладагента воды и механических частиц. При его отсутствии капилляр может засориться или замерзнуть.
Терморегулятор (термостат) выключает компрессор при достижении необходимой температуры.
Ресивер повышает эффективность холодильной установки. Без терморегулирущего вентиля (с капиллярной трубкой) скорость выработки холода является постоянной. И, если она будет слишком большой, компрессор будет часто включаться–выключаться, а если слишком маленькой — охлаждение будет идти слишком долго. Использование ТРВ позволяет изменять скорость охлаждения в больших пределах, но требует наличия ресивера для компенсирования колебаний расхода хладагента.
Различные датчики температуры и давления, управляемые электроникой регуляторы давления и клапаны используются для повышения эффективности устройства и поддержания специфических режимов работы.
Из холода в жар
Чаще всего холодильная машина используется именно для охлаждения — испаритель расположен в охлаждаемом объеме, а конденсатор вынесен в окружающую среду. Так работают кондиционеры, холодильники и морозильники. Но холодильный контур не только поглощает тепло на испарителе, но и выделяет его на конденсаторе. Нельзя ли использовать холодильную машину «наоборот» — для обогрева, расположив конденсатор в обогреваемом помещении, а испаритель вынеся наружу?
Еще как можно. Холодильная машина использует электроэнергию не для непосредственного нагрева (как ТЭН), а для переноса тепла, поэтому эффективность ее выше, чем у обычного электронагревателя. Многие современные кондиционеры могут работать «наоборот», используя теплообменник внутреннего блока как конденсатор, а теплообменник внешнего блока – как испаритель. В таком режиме на 1 кВт потребленной мощности кондиционер может произвести 2–6 кВт тепла. Греть комнату кондиционером может быть значительно выгоднее, чем электрообогревателем!
В местах с более холодным климатом в последнее время все большую популярность получают тепловые насосы – паровые компрессорные холодильные машины, у которых испаритель помещен под землю на глубину, большую глубины промерзания. Поскольку там всегда сохраняется положительная температура, эффективность теплового насоса не зависит от времени года. Такие устройства намного экономичнее электрических обогревателей и могут использоваться для отопления жилища круглый год при любой температуре. К сожалению, высокая стоимость тепловых насосов пока препятствует их популярности.
Виды компрессоров
Поршневые компрессоры устанавливаются в основном в холодильниках и морозильниках. В большинстве моделей поршень приводится в движение обычным электродвигателем, двигающим поршень через шатунно-кривошипный, кулачковый или кулисный механизм.
Существуют также электромагнитные (линейные) поршневые компрессоры. В них цилиндр расположен внутри катушки, создающей электромагнитное поле, которое приводит в движение поршень.
Поршневые компрессоры способны создавать высокое давление, обеспечивая большой перепад температур на испарителе и конденсаторе. Кроме того, обычный поршневой компрессор имеет достаточно простую конструкцию, не требующую высокой точности изготовления деталей, соответственно стоят они недорого. Однако недостатков у поршневых компрессоров тоже хватает:
Поэтому поршневой компрессор можно повторно запускать только через несколько минут после остановки, когда давление в системе выровняется. Защитой от повторного пуска снабжены далеко не все модели, поэтому холодильное оборудование рекомендуется подключать через реле времени с задержкой включения в 5–10 минут.
Ротационные компрессоры (иногда называемые роторными) создают давление за счет изменяющегося зазора между вращающимся ротором и корпусом компрессора.
Существуют различные модификации этого вида компрессоров — с эксцентричным ротором, с подвижными лепестками, с качающимся ротором, спиральный и т. п.
Все они обладают небольшими габаритами, низким уровнем шума и увеличенным ресурсом за счет снижения количества подвижных деталей. К недостаткам этого вида можно отнести сложность изготовления (ротор и корпус должны быть изготовлены с высокой точностью) и низкое максимальное давление. Такие компрессоры чаще используются в климатической технике, для которой не требуется создавать очень низкую температуру.
Ротационными и поршневыми список компрессоров не исчерпывается — существуют еще центробежные, винтовые, кулачковые и другие. Но в бытовой технике они используются реже.
Вне зависимости от вида компрессор может быть неинверторным (стандартным) или инверторным. У обычных компрессоров скорость вращения двигателя постоянна, для поддержания заданной температуры он периодически включается и выключается. В инверторных компрессорах двигатель подключен через частотный преобразователь (инвертор), с помощью изменения частоты напряжения меняющий скорость вращения электродвигателя. Такой компрессор поддерживает заданную температуру выставлением нужной скорости вращения. Инверторные компрессоры дороже, но экономичнее, эффективнее и имеют больший ресурс.
Типы хладагентов
Чем ниже температура кипения хладагента, тем более низкую температуру можно получить на испарителе холодильной машины. Однако, понизить температуру в морозильнике, просто поменяв фреон на более «холодный», скорее всего, не выйдет — хладагенты с низкой температурой кипения требуют большего давления для конденсации. Компрессор, рассчитанный на фреон с высокой температурой кипения, просто не сможет создать такое давление. Поэтому при замене хладагента следует придерживаться рекомендаций из инструкции, и не заправлять хладагент с характеристиками, сильно отличающимися от рекомендованных.
В бытовых устройствах чаще всего используются следующие хладагенты:
Фреон R22 (хладон 22, хлордифторметан) до недавних пор часто использовался в холодильных и морозильных установках. Обладает достаточно низкой температурой кипения (-40,8°С), при утечке возможна дозаправка системы. Однако из-за вреда, наносимого окружающей среде (разрушение озонового слоя) R22 в последнее время используется редко, а во многих странах вообще запрещен.
R600a (изобутан) все чаще используется в холодильной технике вместо менее экологичного R134. Его преимуществами являются низкое давление конденсации и высокая удельная теплота парообразования – холодильники, использующие этот фреон, дешевле и экономичнее. Однако из-за высокой температуры кипения (-12°С) заправленную им технику нельзя использовать на улице при отрицательных температурах.
Следует также помнить о том, что каждый тип фреона требует использования определенного вида масла для смазки деталей компрессора. Обычно тип (а иногда и марка масла) приводятся в сопроводительной документации к фреону. Использование других масел может привести к поломке компрессора.
Как видно, ничего сложного в холодильной технике нет, а понимание принципов ее работы может значительно продлить жизнь технике, позволить сэкономить на электроэнергии и уберечь от неправильных действий, могущих привести к поломке прибора.
Классификация и свойства хладагентов в системах кондиционирования и вентиляции
Холодильный агент (хладагент)—используемая в холодильной системе рабочая среда, которая поглощает теплоту при малых значениях температуры и давления и выделяет теплоту при более высоких температуре и давлении. Этот процесс сопровождается изменением агрегатного состояния рабочей среды. (ГОСТ Р 12.2.142—99).
Способность переходить из жидкого состояния в газообразное – это свойство всех веществ, но только некоторые из них подходят для использования в качестве хладагентов.
С развитием техники в качестве хладагентов использовались все новые и новые вещества: аммиак (NH3) – с 1874 года, диоксид серы (SO2) – с 1874 года, метилхлорид (C2H5Cl) – с 1878 года, углекислота (CO2) – с 1881 года. Эти хладагенты называют «классическими». Аммиак используется и в наши дни, в последнее время вновь набирает популярность применение в качестве хладагента углекислоты.
Существуют следующие критерии выбора соединений для создания хладагента: большое количество атомов фтора (такие соединения менее токсичны и проявляют слабую химическую активность по отношению к металлам); малое количество атомов водорода (чем оно меньше, тем ниже воспламеняемость).
Далеко не все соединения галогенов и углерода (без водорода) горючи, но при взаимодействии с воздухом они образуют ядовитый газ фосген.
Ранее во многих холодильных системах использовался только хладагент ХФУ R12. В 1974 году учеными было установлено, что хлорфторуглероды разрушают озоновый слой Земли. Их использование было запрещено и им потребовалось найти замену.
Различают следующие типы хладагентов:
1. Предельные углеводороды и их галогенные производные
Они обозначаются буквой R с тремя цифрами после нее, т. е. R c d u, где:
2. Непредельные углеводороды и их галогенные производные
Способ цифрового обозначения тот же самый, что и в предыдущем случае, но слева после буквы добавляется 1 для обозначения тысяч.
3. Циклические углеводороды и их производные
Для хладагентов на основе циклических углеводородов и их производных после буквы R перед цифровым индексом вставляется буква С (например, RC318).
4. Органические соединения
Им присвоена серия 600, а номер каждого хладагента внутри этой серии назначается произвольно (например R600 – бутан).
5. Неорганические соединения
Им присвоена серия 700, а идентификационный номер хладагентов, принадлежащих к этой серии, определяется как сумма числа 700 и молекулярной массы каждого хладагента. Например, для аммиака, химическая формула которого NH3, имеем lxl4(N)+3xl(H3)+700= =717, таким образом, он обозначается как R717. К данной группе относятся также вода (R718), углекислота (R744) и другие вещества.
6. Неазеотропные смеси
Неазеатропные смеси – вещества, жидкая и газовая фаза которых в состоянии термодинамического равновесия имеют разный состав. Иными словами, при одном и том же давлении кипения, температура кипения имеет разные значения. Этим хладагентам присвоена серия 400 с произвольным номером для каждого хладагента внутри этой серии.
7. Азеотропные смеси
В отличие от неазеотропных, состав газовой и жидкой фаз этих веществ одинаков, то есть они ведут себя как моновещество. Им присвоена серия 500 с произвольным номером каждого хладагента внутри серии.
Согласно ГОСТ Р 12.2.142—99 «Системы холодильные холодопроизводительностью свыше 3 кВт», хладагенты разделяются на следующие группы: невоспламеняющиеся нетоксичные холодильные агенты; токсичные и вызывающие коррозию холодильные агенты, нижний предел воспламенения которых (или нижняя граница взрыва) составляет более 3,5% по объему в смеси с воздухом; холодильные агенты, нижний предел воспламенения которых (нижняя граница взрыва) ниже 3,5% по объему в смеси с воздухом.
В данном курсе будут рассматриваться особенности монтажа оборудования, работающего на фреонах (хладагенты группы 1).
Хлорфторуглероды (ХФУ, CFC)
Вещества с высоким озоноразрушающим потенциалом (ОРП) запрещены к использованию Монреальским протоколом (международное соглашение о защите озонового слоя Земли). Производство ХФУ (например, R11, R12 и R114) на территории стран Европейского сообщества прекращено.
Гидрохлорфторуглероды (ГХФУ или HCFC)
Имеют невысокую озоноразрушающую способность и классифицируются Монреальским протоколом как переходные вещества. Их использование должно существенно сократиться в начале XXI века. Примером таких хладагентов являются R22, R123 и R124.
Гидрофторуглероды (ГФУ или HFC)
Вещества не содержат хлора, следовательно, имеют нулевой ОРП и не попадают под действие Монреальского протокола. К ним относятся хладагенты R125, R134a и R152a. Хладагент R134a может быть непосредственно использован вместо R12 при минимальной модернизации установки.
Критерии выбора хладагента
Физические свойства
Давление кипения
Давление кипения (абсолютное) должно составлять, по меньшей мере, 1 бар, абс..
При таком давлении воздух и вода не проникают в систему в случае небольших протечек или при использовании в системах сальниковых компрессоров.
Давление конденсации
Давление конденсации должно быть минимальным, чтобы не усложнять конструкцию системы и сократить потребление энергии. Рабочее давление в системе зависит от типа хладагента и конденсатора.
Разность давлений
Размер двигателя компрессора зависит от разности давлений pc—po. Она должна быть как можно меньше.
Степень сжатия
Степень сжатия должна быть как можно меньше. С ростом степени сжатия pc/po снижается коэффициент подачи компрессора λ и, следовательно, его производительность. Поэтому следует использовать хладагент с плоской кривой упругости пара.
Температура в конце сжатия
Учитывая, что смазочные материалы сохраняют стабильность в ограниченном диапазоне температур, температура в конце сжатия должна быть как можно ниже. Температура зависит от хладагента, степени перегрева всасываемого пара, а также от давления конденсации в системе и компрессоре.
Критическая температура внешней стенки трубопровода составляет от 120 до 140 °C.
Поэтому решающим фактором является температура пластин клапана на компрессоре, которая составляет около 160 °C. При более высокой температуре масло начинает коксоваться.
Коэффициент растворимости в воде
Присутствие воды в системе охлаждения нежелательно. Чем выше коэффициент растворимости хладагента в воде, тем больше влаги он может поглотить, предохраняя тем самым систему от поломок.
Учитывая способность сложноэфирных синтетических масел и полиалкиленгликолевых масел поглощать воду в большом количестве, уровень влажности в системе необходимо контролировать. Поставляемые хладагенты содержат остаточную влагу в количестве, не превышающем 20 промилле.
Удельная теплота парообразования и плотность газа на всасывании
Чтобы сделать вывод об охлаждающих свойствах определенного хладагента, необходимо учитывать эти две переменные. Чем большей удельной теплотой парообразования обладает хладагент, тем меньший рабочий объём цилиндров компрессора потребуется для достижения той же самой холодопроизводительности. Чтобы компрессор доставлял максимальное количество хладагента за один ход поршня, хладагент при входе в компрессор должен обладать максимально возможной плотностью.
Смешиваемость с маслами
Для нормальной циркуляции масла в охлаждающих системах необходима стопроцентная смешиваемость жидкого хладагента с маслом. При полной нерастворимости масла в хладагенте, как, например, в случае с аммиаком, применяют масла со специфическими свойствами или холодильные системы специальной конструкции.
Если пропорция масла и хладагента находится в «промежутке несмешиваемости», могут возникнуть сбои в работе системы охлаждения, связанные с доставкой масла. Кривая промежутка несмешиваемости зависит от типа хладагента и смазочного масла.
Химические свойства
Химическая активность хладагента по отношению к смазочным и другим видам материалов недопустима при любых условиях работы системы. Сами хладагенты обладают средней химической активностью. Этот факт следует принимать в расчет при смешивании хладагента и масла.
Физиологические свойства
Хладагент должен иметь высокую физиологическую совместимость (нетоксичность). Для R 134a максимально допустимая концентрация (предельное значение) составляет 1000 промилле. Вдыхание его паров при малой концентрации в течение 8 часов не оказывает вредного воздействия на организм человека. Высокое содержание хладагента в воздухе может привести к удушью, т.к. снижается доля кислорода (особенно у пола, так как R 134a, как и другие фреоны, тяжелее воздуха). Могут появиться головная боль, тошнота, потеря сознания.
Под воздействием открытого огня, ультрафиолета, при контакте с горячими или раскаленными металлическими поверхностями, хладагент распадается; продукты распада хладагента ядовиты.
Соответствие требованиям по охране окружающей среды
Использование, производство и утилизация хладагентов не должны оказывать отрицательного влияния на окружающую среду.
Озоноразрушающий потенциал (ОРП, ODP)
За последние несколько десятилетий естественная концентрация озона в стратосфере планеты снизилась, и слой, защищающий от вредного излучения Солнца, истончился. Причиной этого стали галогены (хлор, фтор и бром), которые выделяются из хлорфторуглеродов под воздействием ультрафиолета.
На международной конференции в Монреале в 1987 году был подписан Монреальский протокол, согласно которому страны-участники договорились к концу 1995 года свернуть производство веществ, разрушающих озоновый слой.
Поскольку некоторые хлорфторуглероды достигают высоты озонового слоя в течение 15-20 лет, истощение озонового слоя продолжится в ближайшем будущем.
Наиболее сильное истощение озонового слоя (более 50%) наблюдается в районе полюсов земли. Над Антарктикой можно наблюдать так называемую озоновую дыру в период с сентября по ноябрь, во время антарктической весны. В северном полушарии истощение проявляется зимой и весной. В период с 1968 по 1992 снижение уровня концентрации озона над Европой достигало в среднем трех процентов за 10 лет. В последние несколько лет этот показатель поднимался до 5 процентов. Увеличение интенсивности солнечной радиации повлечет за собой рост случаев заболевания раком кожи и катарактой.
ОРП хладагентов с самой высокой озоноразрушающей способностью, таких как R11 и R12, равен 1,0 (100%). ОРП других хладагентов оценивается в сравнении с ОРП R11.
Потенциал глобального потепления (ПГП, GWP)
Усиление парникового эффекта стало причиной повышения средней температуры на Земле на 1-1,5 К. Глобальное потепление со временем приведет к повышению уровня мирового океана, изменению климата и погодным аномалиям.
Потенциал глобального потепления хладагентов определяется в ПГП (единица для диоксида углерода с временным горизонтом 100 лет) или H-GWP (единица для хладагента R11 с временным горизонтом 100 лет).
ПГП R12 равен 8500, R 134a – 1300.
Величина потенциала глобального потепления определяется путем моделирования реакций, происходящих в атмосфере, поэтому ее значения являются приблизительными.
Суммарный эквивалент теплового воздействия (TEWI)
Величина суммарного эффекта теплового воздействия (прямого и косвенного) определяется не только тепловым воздействием хладагента, но и системы, в которой он используется. Также принимается в расчет тепловое воздействие, вызванное энергетическими потребностями холодильной установки, высвобождением хладагентов во время утилизации и утечек. Различают прямой парниковый эффект, вызванный хладагентами (протечки, утечки при ремонте и утилизации) и косвенный парниковый эффект (выделение CO2 при выработке электроэнергии). Недостатком при определении суммарного эффекта теплового воздействия является игнорирование теплового воздействия при производстве каждого отдельного хладагента.
Каждый производитель хладагентов выпускает продукцию под собственным наименованием, например:
Для перевозки и хранения хладагентов используется сосуды следующих типоразмеров: