жидкий воздух что это такое

Жидкий кислород

Жидкий кислород – это агрегатное состояние кислорода, в котором он представляет собой бледно-синюю жидкость. Он относится к категории веществ, которые одними из первых стали использоваться в разных областях промышленности. Жидкий О2 используется с двумя целями: для усиления процессов горения и для окисления химических процессов. Именно необходимость решения этих задач стала причиной популярности воздухоразделительного оборудования.

Физические свойства жидкого кислорода

В жидком состоянии кислород имеет бледно-голубой оттенок. При переливании из одной емкости в другую жидкий кислород выделяет водяные пары, поглощая тепло из окружающего воздуха. При этом температура воздуха резко снижается, что приводит к образованию тумана.

Этот вид кислорода способен закипать при температуре 183°С. Если в это время поместить его в среду, в которой температура воздуха составляет около 30-40°С, то кипение лишь усилится. При комнатной температуре жидкость быстро испаряется.

Для того чтобы снизить скорость испарения кислорода жидкого, его помещают в специальные баллоны. Баллон для хранения О2 представляет собой двухслойный сосуд. Внутренняя стенка баллона покрыта слоем серебра, а между ней и внешней стенкой полностью выкачан весь воздух. Слой серебра необходим для того, чтобы отражать тепло. В таком баллоне кислород может храниться на протяжении нескольких суток.

К другим физическим свойствам жидкого кислорода можно отнести следующие:

Как получают жидкий кислород?

После этого проводят ректификацию, то есть отделение азота от кислорода. Этого добиваются путем многократного нагревания жидкости, в ходе которого первым делом испаряется азот, а оставшаяся жидкость обогащается О2.

В каких областях используют жидкий кислород?

В настоящее время жидкому кислороду находится применение в разных областях промышленности:

Жидкий О2 служит в качестве сырья для получения других химических соединений, вроде двуокиси титана или окиси этилена. С его помощью также можно повысить производительность большинства окислительных процессов.

В стекольной промышленности кислород применяется для интенсификации процессов горения, необходимых для поддержания работы стеклоплавильных печей. Помимо этого, он помогает снизить выбросы оксида азота и увеличить эффективность стекольного производства.

С этой же целью жидкий О2 используется в металлургии, где он обогащает воздух и повышает эффективность процесса горения.

С жидким кислородом связано ускорение процессов роста клеток, поэтому в фармацевтике его добавляют в ферментеры и биореакторы.

В целлюлозно-бумажной отрасли промышленности с помощью этого вида кислорода осуществляется окислительное экстрагирование, обработка сточных вод и делигнификация (процесс получения целлюлозы).

Помимо этого, кислородом жидким пользуются в автомобилестроении и машиностроении, где он применяется в качестве вспомогательного газа во время лазерной резки. Его также добавляют в состав защитных газовых смесей.

Техника безопасности при работе с жидким кислородом

При работе с жидким кислородом нет угрозы отравления, но все же некоторые требования безопасности необходимо строго соблюдать:

Преимущества сотрудничества с НПК «Грасис»

Научно-производственная компания «Грасис» осуществляет поставки оборудования, которое позволит вам самостоятельно получать газообразный кислород из атмосферного воздуха.

Наша компания более 10 лет занимается разработкой и производством газо- и воздухоразделительного оборудования, а также инжинирингом, проектированием и выполнением комплексных работ «под ключ». Мы поможем вам решить любые задачи, связанные с газо- и воздухоразделением, утилизацией попутного нефтяного газа и подготовкой природного газа.

В процессе производства оборудования мы используем нанотехнологии и высококачественные комплектующие, благодаря которым улучшаются технико-эксплуатационные свойства продукции. Свяжитесь с представителями компании «Грасис», чтобы получить развернутую информацию о заинтересовавшей вас установке!

Источник

Вакуум. Жидкий воздух

В Лабораториях вакуум («пустота»), при котором столкновения молекул между собой уже сравнительно редки, соответствует давлению примерно в 0,13 Па. Даже с помощью самых совершенных методов современной техники не удается достигнуть вакуума, при котором в кубическом сантиметре газа оставалось бы менее 1000 частиц.

Масса литра воздуха при нормальных условиях (1,293 г), а его средняя молярная масса воздуха равна 22,4·1,293 = 29 г/моль.

При достаточном охлаждении воздух переходит в жидкое состояние. Жидкий воздух можно довольно долго сохранять в сосудах с двойными стенками, из пространства между которыми для уменьшения теплопередачи выкачан воздух. Подобные сосуды используются, например, в термосах.

Трудно сжижаемые газы научились сжижать используя их свойства охлаждаться при расширении, если газ многократно сжимать и выпускать его в большой сосуд, то он будет охлаждаться и когда его температура достигнет критической он начнет сжижаться.

жидкий воздух что это такое. Смотреть фото жидкий воздух что это такое. Смотреть картинку жидкий воздух что это такое. Картинка про жидкий воздух что это такое. Фото жидкий воздух что это такое

Далее воздух, омыв два теплообменника и тем самым охладив второй поток, идущий навстречу, выходит наружу и собирается в термосе. –

В 1938 г. П. Л. Капицей был разработан метод получения жидкого воздуха при низком давлении — всего 5-6 атм. Основной особенностью этого метода является замена поршневых механизмов компрессора и детандера турбинными.

Применение

Сжатый воздух хранят в стальных балло­нах, рассчитанных на давление 150 атм. По дей­ствующим техническим условиям баллоны эти должны иметь черную окраску с белой надписью: «Воздух сжатый».

Химические реакции при температуре жидкого воздуха вообще очень сильно замедляются. Однако благодаря большой концентрации в нём кислорода (концентрацией называется количество вещества в единице объёма или массы), смешанные с жидким воздухом горючие вещества горят гораздо энергичнее, чем в обычных условиях. Например, смоченная жидким воздухом вата сгорает со вспышкой подобно бездымному пороху.

Источник

Кислород – рождающий кислоты

Содержание

Кислород при нормальных условиях (температуре и давлении) представляет собой прозрачный газ без запаха, вкуса и цвета. Не относится к горючим газам, но способен активно поддерживать горение.

По химической активности среди неметаллов он занимает второе место после фтора.

Все элементы, кроме благородных металлов (платина, золото, серебро, родий, палладий и др.) и инертных газов (гелий, аргон, ксенон, криптон и неон), вступают в реакцию окисления и образовывают оксиды. Процесс окисления элементов, как правило, носит экзотермический (с выделением теплоты) характер. Также необходимо учитывать тот факт, что при повышении температуры, давления или использовании катализаторов – скорость реакции окисления резко возрастает.

История открытия кислорода

Открытие кислорода приписывают Джозефу Пристли (Joseph Priestley). У него была лаборатория, оборудованная приборами для собирания газов. Он испытывал его физиологическое действие на себе и на мышах. Пристли установил, что после вдыхания газа некоторое время ощущается приятная легкость. Мыши в герметически закрытой банке с воздухом задыхаются быстрей, чем в банке с O2. Поскольку Пристли был приверженцем флогистонной теории он так и не узнал, что оказалось у него в руках. Он только описал этот газ, даже не догадываясь, что он описал. А вот лавры открытия кислорода принадлежат Антуан Лоран Лавуазье (Antoine Laurent de Lavoisier), который и дал ему имя.

Лавуазье, поставил свой знаменитый опыт, продолжавшийся 12 дней. Он нагревал ртуть в реторте. При кипении образовывалась ее красная окись. Когда реторту охладили, оказалось, что воздуха в ней убыло почти на 1/6 его объема, а остаток ртути весил меньше, чем перед нагревом. Но когда разложили окись ртути сильным прокаливанием, все вернулось: и недостача ртути, и «исчезнувший» кислород.

Впоследствии Лавуазье установил, что этот газ входит в состав азотной, серной, фосфорной кислот. Он ошибочно полагал, что O2 обязательно входит в состав кислот, и поэтому назвал его «оксигениум», что значит «рождающий кислоты». Теперь хорошо известны кислоты, лишенные «оксигениума» (например: соляная, сероводородная, синильная и др.).

Способы получения кислорода

В основном кислород получают тремя способами:

Из атмосферного воздуха его получают методом глубокого охлаждения, как побочный продукт при получении азота.

Также O2 добывают путем пропускания электрического тока через воду (электролиз воды) с попутным получением водорода.

Химические способ получения малопроизводителен, а, следовательно, и неэкономичен, он не нашел широкого применения и используются в лабораторной практике.

Наверно многие помнят химический опыт, когда в колбе нагревают марганцовку (перманганат калия KMnO4), а потом выделяющийся в процессе нагрева газ собирают в другую колбу?

Применение кислорода

Помимо того, что все живые существам в природе, за исключением немногих микроорганизмов, при дыхании потребляют кислород, он широко применяется во многих отраслях промышленности: металлургической, химической, машиностроении, авиации, ракетостроении и даже в медицине.

В химической промышленности его применяет:

В металлургии его используют:

В медицинских целях больным, у которых нарушена нормальная деятельность органов дыхания или кровообращения, искусственно увеличивают содержание O2 в воздухе или дают дышать непродолжительное время чистым O2. Медицинский кислород, выпускаемый ГОСТ 5583, особенно тщательно очищают от всех примесей.

Применение кислорода в сварке

Сам по себе O2 является негорючим газом, но из-за свойства активно поддерживать горение и увеличения интенсивности (интенсификации) горения газов и жидкого топлива его используют в ракетных энергетических установках и во всех процессах газопламенной обработки. В таких процессах газопламенной обработки, как газовая сварка, поверхностная закалка высокая температура пламени достигается путем сжигания горючих газов в O2, а при газовой резке благодаря ему происходит окисление и сгорание разрезаемого металла.

При полуавтоматической сварке (MIG/MAG) кислород O2 используют как компонент защитных газовых смесей с аргоном (Ar) или углекислым газом (CO2).

Кислород добавляют в аргон при полуавтоматической сварке легированных сталей для обеспечения устойчивости горения дуги и струйного переноса расплавленного металла в сварочную ванну. Дело в том, что как поверхностно активный элемент он уменьшает поверхностное натяжение жидкого металла, способствуя образованию на конце электрода более мелких капель.

При сварке низколегированных и низкоуглеродистых сталей полуавтоматом O2 добавляют в углекислый газ для обеспечения глубокого проплавления и хорошего формирования сварного шва, а также для уменьшения разбрызгивания.

Чаще всего кислород используют в газообразном виде, а в виде жидкости используют только при его хранении и транспортировке от завода-изготовителя до потребителей.

Вредность и опасность кислорода

За внешней безобидностью скрывается очень опасный газ, но об этом на нашем сайте опубликована статья про маслоопасность и взрывоопасность кислорода и мы не будем здесь дублировать информацию.

Хранение и транспортировка кислорода

Кислород газообразный технический и медицинский выпускают по ГОСТ 5583.

Хранят и транспортируют его в стальных баллонах ГОСТ 949 под давлением 15 МПа. Кислородные баллоны окрашены в синий цвет с надписью черными буквами «КИСЛОРОД».

жидкий воздух что это такое. Смотреть фото жидкий воздух что это такое. Смотреть картинку жидкий воздух что это такое. Картинка про жидкий воздух что это такое. Фото жидкий воздух что это такое

Жидкий кислород выпускается по ГОСТ 6331. O2 находится в жидком состоянии только при получении, хранении и транспортировке. Для газовой сварки или газовой резки его необходимо снова превратить в газообразное состояние.

Характеристики кислорода

Характеристики O2 представлены в таблицах ниже:

Коэффициент перевода объема и массы O2 при Т=15°С и Р=0,1 МПа

Масса, кгОбъем
Газ, м 3Жидкость, л
1,33711,172
1,1410,8531
10,7480,876

Коэффициенты перевода объема и массы O2 при Т=0°С и Р=0,1 МПа

Масса, кгОбъем
Газ, м 3Жидкость, л
1,42911,252
1,1410,7991
10,7000,876

Кислород в баллоне

НаименованиеОбъем баллона, лМасса газа в баллоне, кгОбъем газа (м 3 ) при Т=15°С, Р=0,1 МПа
O2408,426,3

Благодаря этой таблице теперь можно легко дать ответы на вопросы, которые очень часто задают сварщики:

Источник

Криогенная технология

Криогенная технология-разделения воздуха с помощью криогенных температур на основные газовые компоненты

ИА Neftegaz.RU. Технология разделения воздуха с помощью криогенных температур на основные газовые компоненты известна очень давно.

Повторяя подобный процесс многократно на ректификационных тарелках воздухоразделительных колонн, получают жидкие кислород, азот и аргон нужной чистоты.
При относительно высокой стоимости криогенные блоки очень надежны, просты в эксплуатации, обладают высокими техническими характеристиками и позволяют получать газы высокой чистоты в очень больших объемах, например, газообразный азот сверхвысокой чистоты (до 1 ppb), который не может быть получен в адсорбционных и мембранных системах.

В то же время криогенные блоки являются экономически эффективными при долгосрочной эксплуатации за счет низкого удельного энергопотребления и низких эксплуатационных затрат.
Широкое применение нержавеющей стали, особенно для трубопроводов и клапанов, позволяет использовать простые и надежные сварные соединения, а также обеспечивает противокоррозионную стойкость. Кроме этого, само по себе сварные соединения нержавеющих трубопроводов как внутри холодного блока, так и в не его, обеспечивают долговечную плотность и не допускают протечек.
Основными техническими преимуществами криогенного способа являются гарантированная высокая чистота продукта при неизменном расходе, а также низкое удельное энергопотребление в течение всего срока эксплуатации.
Минимизация вращающихся и движущихся механизмов обеспечивает долгий ресурс работы криогенных установок.
При соблюдении проектных условий эксплуатации блока комплексной очистки (БКО) не требуется замена адсорбентов в течение всего срока службы установки.

Процесс генерации жидкого азота

Источник

Расплескалась синева: первое получение жидкого кислорода

История сжижения кислорода под конец превратилась в соперничество. Но кто возьмет верх: инженер, всю жизнь проработавший на металлургическом заводе, или специалист по физике низких температур в Женевском университете? Лед или пламень, теория или практика, Эйфелева башня или Суэцкий канал одержат победу? Об этом читайте в рубрике «История науки».

Жидкий кислород, налитый в химический стакан, а не в сосуд Дьюара, удивит вас красивым голубым цветом. Этот цвет в прямом смысле небесной лазури – ведь этот газ составляет 21% воздуха. Но первым человеком, получившим его, был вполне приземленный инженер и владелец завода, не привыкший мечтами парить в небесах.

Луи-Поль Кайете родился в Бургундии, в живописной коммуне Шатийон-сюр-Сен. Школьное образование он начал получать там же, продолжил в Париже, а затем поступил в Горный институт вместе с братом Камилем. Там, в химической лаборатории, Луи познакомился со множеством будущих знаменитостей французского научного мира. Окончив институт, братья совершили несколько поездок в Англию, Австрию и Германию, тоже с образовательными целями: там они увидели самые современные доменные печи и прокатные станы, знакомились с самым передовым оборудованием. Но заниматься всю жизнь одной наукой не получилось: отец и дед молодых людей состарились, и дома, в Бургундии, нужна была помощь в работе на металлургическом заводе.

Myrabella / Wikimedia Commons / CC BY-SA 4.0

Но и там Луи не прекратил научных изысканий. Сначала он занялся исследованием процессов горения древесины в печах, показав, что этот процесс приводит к выделению углекислого газа. Была у него слабость и к ботанике: свободное время он уделял своей небольшой оранжерее, где выращивал редкие орхидеи и бегонии, в результате даже опубликовав несколько статей по физиологии растений.

После того, как его брат умер от туберкулеза, а отец и дед – от старости в 1860-х годах, Луи-Поль Кайете остался единственным владельцем завода. Но это только подстегнуло его исследования. Он занялся изучением выплавки чугуна и участием в ней разных газов. Для понимания процессов в плавильных печах ученому нужно было измерить температуру и давление. Однако существующие приборы не работали в большом диапазоне температур и давлений, и Кайете посвятил полтора десятка лет своей жизни усовершенствованию манометров и термометров, а также изучению зависимости объема газов от давления и температуры, описанной законом Бойля-Мариотта.

В 1870 году на первом этаже оранжереи он построил себе лабораторию, оборудованную мощным гидравлическим насосом, чтобы изучать химические вещества при высоком давлении и температуре. Итогом его работы стал манометр, способный измерить давление до 400 атмосфер. В 1891 году он даже установил свой манометр на Эйфелевой башне.

Тогда Кайете и заинтересовался сжатием газов и решил получить их в жидком виде. В ноябре 1877 года он проводил опыты по сжижению ацетилена и диоксида азота, сначала сжимая их под большим давлением, а потом охлаждая их другими сжиженными газами. Кайете использовал эффект Джоуля-Томпсона, зная, что если замораживать газ при сильном давлении, а затем позволить ему резко расшириться, температура газа упадет еще больше.

Аппарат Кайете для сжижения газов

Popular Science Monthly Volume 12/Wikipedia

Этим ученым был физик из Женевы Рауль Пикте. Он был третьим из пяти отпрысков старинного швейцарского рода. Получив образование в Париже, Пикте к тому времени уже семь лет возглавлял кафедру в Женевском университете, занимаясь физикой низких температур. До этого он успел поработать в Египте во время строительства Суэцкого канала, реорганизовав образовательные учреждения в этой стране.

В отличие от своего французского соперника, он сам не занимался инженерным делом и прикладной наукой, хотя и верил в важность образования в обеих областях. Несмотря на это, у него, несомненно, был изобретательский талант: уже в 23 года он сконструировал холодильную установку, которая производила 15 килограммов льда в час. Идея Пикте о том, что в холодильных установках должна быть смесь двух веществ, была развита в дальнейшем и использована на практике при создании холодильников и криогенного оборудования.

Лаборатория Рауля Пикте

Ch. Baude/L’Illustration, du 19 janvier 1878, vol. LXXI, p. 45, et L’Exposition de Paris, journal hebdomadaire, du 28 mai 1878, N°4, p. 28

Разрешить спор помог Анри Девиль – французский физикохимик, разработавший промышленный способ производства алюминия и преподаватель Сорбонны. Также он ввел теорию диссоциации – разложения вещества при нагревании – и изготовил эталоны метра и килограмма из сплава платины и иридия для Международной комиссии мер и весов в 1872 году. К такому влиятельному ученому нельзя было не прислушаться. Так на чьей же он был стороне? Оказалось, Девиль, друг Кайете, получил от него письмо, датированное 2 декабря, с точным и полным описанием опыта по получению кислорода. При возникновении разногласий Анри Девиль тут же доставил доказательства секретарю Академии наук. Так Луи-Поль Кайете и стал известен как первый ученый, получивший кислород в жидком виде.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *