что означает глиссирование на лодке
Что такое выход на Глиссер, глиссирование на лодке
Интерес вокруг вопроса о глиссировании надувных моторных лодок порой порождает плодотворные и интересные мнения. Но сложность для владельцев судов состоит в том, что все результаты исследования поведения лодок на воде выведены экспериментальным путем и не подтверждены теорией.
Дополнительное препятствие — ложная информация в интернете. Нередко приходится сталкиваться со статьями в специализированных журналах или обсуждениями на тематических форумах, где к вопросу глиссирования надувных лодок подходят также, как к глиссированию судов с жестким корпусом. Это приводит к ошибочным выводам и показывает некомпетентность авторов. Чтобы подойти к проблеме грамотно, для начала дадим определение термину “глиссирование”.
Что такое глиссер на лодке?
Если объяснить термин проще: глиссер — это движение по воде, когда корпус лодки становится под небольшим углом к поверхности и поддерживается в таком состоянии благодаря сопротивлению воды, другими словами — лодка скользит по поверхности. но такое объяснение больше применимо для судна с жестким корпусом. Поэтому необходимо немного подкорректировать, чтобы пояснение стало верным для надувных лодок:
Глиссирование — способ передвижения, которое подразумевает, что площадь соприкосновения днища и поверхности воды минимальна.
Существуют три стадии перехода на глиссирование:
Подробнее о глиссере
Водоизмещающая стадия — это передвижение на небольшой (до 15-16 км/ч) скорости. Она достигается при торможении, на начальном отрезке пути при разгоне и при гребле веслами.
Переходную стадию судно достигает, разогнавшись до 17-18 км/ч. Отличительные черты: низко просевшая корма, когда борт и мотор становятся вровень с поверхностью воды, нос при этом поднимается высоко вверх. Новички часто принимают переходную стадию за полноценное скольжение.
Специалисты не пришли к общему мнению, что считать глиссированием для надувного судна, поэтому определения несколько рознятся. Если с судами с жестким корпусом проблем не возникает, потому что их ход легко просчитать теоретически и подтвердить практическим путем, тот же вопрос применимо к надувным судам не так однозначен, а то, как они поведут себя на ходу, не всегда можно предвидеть заранее. По одному из существующих заявлений обычные надувные лодки с жестким полом, оснащенные аирдеком, передвигаются в режиме, названном “условное глиссирование”.
С другой стороны, надувные моторные катамараны и некоторые виды концептуальных моделей достигают режима глиссирования в классическом варианте определения. Поэтому переход и поддержание скользящего хода для каждой отдельной модели имеют свои особенности. Важно учитывать форму днища и мощность, которую способен развить двигатель. Чтобы подать информацию проще для понимания, мы решили опустить в словосочетании “условное глиссирование” “условность” обозначения.
Во время перехода к скользящему движению сопротивление воды снижается и, соответственно, возрастает скорость хода. Судно выравнивается, корпус располагается практически параллельно поверхности воды, но при этом соприкасается с ней не больше, чем ⅔ площади днища. Со стороны это выглядит как плавное скольжение без особых усилий. Для перехода на глиссирование двигателю необходимо добавить оборотов, а после преодоления переходного режима их можно сбросит на ⅓. Этот маневр не приведет к снижению скорости, и лодка продолжит скользить. Так получается, потому что для преодоления пограничного состояния необходимо сделать рывок. Чтобы поддерживать плавность хода требуется гораздо меньше усилий. По выведенной в ходе экспериментов статистике надувная лодка переходит скользящий ход при скорости 20 км/ч.
Многие озвучивают профессиональное мнение, что преодоление переходного режима происходит только на скорости более 28 км/ч. Мы берем на себя смелость оспорить это заявление: в зависимости от типа днища, мощности двигателя, загрузки судна и других решающих факторов скорость выхода из переходного режима на скольжение может достигаться на более низких скоростях. Таким образом, некоторые модели переходят на движение, имеющие все характерные черты глиссирования на скорости от 20 км/ч.
Как вывести лодку ПВХ на глиссер?
Если вы решили выйти на глиссер в лодке ПВХ, сделать это будет не трудно. Для начала нужно немного отплыть от берега и удостовериться что перед вам нет никаких помех, затем нужно плавно выжать газ на полную. Через какое то время ваша лодка выйдет на глиссер и после этого момента нужно убавить газ на половину.
Скорость глиссирования
Для глиссирования очень важна скорость, также стоит учесть что существуют минимальные и максимальные значения, которые желательно знать.
Максимальная скорость
Если вы хотите понять, какая максимальная скорость, на которой вы можете глиссировать в своей лодке, нужно использовать формулу Фруда: Fr= V/√(g*L), значение V в данном случае будет скоростью вашей лодки, g – очевидно ускорением свободного падения, а L- длинной корпуса лодки вдоль лини воды.
Минимальная скорость
Все зависит в первую очередь от веса лодки, также стоит учитывать нагрузку на мотор и гребной винт, посмотреть в какой части лодки расположен груз. Однако в среднем, вы захотите выйти на глиссер в лодке ПВХ, вам стоит развить скорость минимум 19-20 км/ч.
Причина по которой лодка не выходит на глиссер
Если ваша лодка не выходит на глиссер, у этого может быть несколько причин:
Экспериментальные сводки по глиссированию
Один из важных факторов для скольжения по водной глади — развесовка внутри кокпита. Чтобы не застрять на стадии переходного режима, необходимо максимально нагрузить нос судна. Некоторые опытные владельцы переносят бензобак на нос лодки. Другой способ — сместиться от двигателя к середине в тот момент, когда лодка максимально задирает нос, чтобы своим весом придавить днище к воде. Этот способ применяют в лодках длиной менее 4 м.
Наименьший показатель мощности двигателя для перехода на скольжение выведена экспериментально и не имеет под собой теоретической базы. Так что этот параметр является спорным и рассчитывается в каждом случае индивидуально.
В профессиональной среде бытует мнение, что мощность двигателя для перехода к скользящему ходу должна превышать 40-50 л.с. на 1 т (зависит от обводов корпуса). Исходя из этих расчетов, 1 лошадиная сила компенсирует 25 кг водоизмещения. При этом учитывается вес судна, дополнительной нагрузки, всех людей на борту и двигателя. Но практическим путем было доказано, что эта пропорция неверна для надувных судов. Для них верны совсем другие величины, уменьшенные по сравнению с данными ранее.
Опираясь на результаты проведенных экспериментов, мы можем заявлять, что надувная лодка общим весом 187 кг (вес лодки, мотора, топлива и водителя) уверенно начала скользить при скорости 25 км/ч. В ходе другого замера установлено, что плоскодонная лодка общим весом 158 кг перешла на глиссирование на скорости 26, 8 км/ч.
Опытным путем мы вывели систему выхода обычной надувной лодки с учетом длины, мощности двигателя и загрузки:
На суднах длиннее 4 м лучше всего установить двигатель мощнее 25 л.с.
Заключение
Итак, исходя из всего вышеперечисленного, представленные расчеты и величины неоспоримы, если относятся к судам с жестким корпусом. В случае надувных моторных лодок все не так однозначно: даже выполненные по одним выкройкам лодки получаются с несколько отличные характеристики. Таким образом все замеры показывают всего лишь один из вариантов поведения лодки на воде, но не эталонные величины. Но все проведенные эксперименты создают базу, которую принимают как средние значения.
Глиссирование на лодке: что это и как вывести лодку на глиссер
Моторные лодки перемещаются по водоему в трех режимах – водоизмещающем, переходном и глиссирующем. Чтобы перейти в третий режим, нужны определенные параметры корпуса и силового агрегата. Рассмотрим более подробно, что нужно для вывода судна на скольжение по воде.
Что такое глиссирование по воде?
Глиссирование – это скольжение днищем по поверхности, при котором плавсредство преодолевает сопротивление воды и практически не погружается в нее. Максимальным глиссером считается стабильное передвижение при высоте волны до 50 см. Маломерные модели могут выйти на него при минимальной скорости 20 км / час, а модели с легким корпусом, без загрузки и с мощным подвесным агрегатом – при 12 – 16 км / час. Такой способ позволяет экономить топливо и быстро преодолевать значительные расстояния.
Советы по выбору мотора для глиссирования
Любое плавсредство с подвесным двигателем мощностью от 3 л. с. может перемещаться таким способом при достижении определенной скорости. При подборе силового агрегата следует учитывать такие моменты:
Выводим лодку на глиссер
На начальном этапе следует определить возможности для конкретного плавсредства и условий:
Практически все надувные ПВХ средства отвечают таким параметрам. Для достижения эффекта скольжения нужно:
Судно длиной 2,5 метра можно загрузить в носовой части, что предотвратит ее вертикальное перемещение. Если возникают проблемы, то можно сместить центр тяжести или изменить угол наклона двигателя. Это можно сделать с помощью специальной ручки. Она позволяет управлять силовым узлом, когда водитель находится в центре или даже в носовой части судна.
Вопрос о глиссировании надувных моторных лодок находится в состоянии постоянного обсуждения и интересует всех владельцев этого типа маломерных судов. Но ситуация именно с надувными лодками осложняется тем, что до сих пор большинство специализированных гидродинамических исследований их обводов и поведения на воде в большинстве своём носят не теоретический, а, скорее, экспериментальный характер. Также в специализированной прессе и интернет-обсуждениях очень часто можно видеть, как вопрос о глиссировании надувных лодок рассматривается через призму судов с жёстким корпусом, что в результате даёт либо просто ошибочную и искажённую информацию либо откровенную ересь.
Если попытаться перевести что значит глиссер на простой и понятный язык, то получится примерно следующее.
Глиссирование — это движение по воде, при котором судно поднимается и удерживается над поверхностью за счёт встречного скоростного напора воды, то есть оно как бы скользит по водной глади. Но это определение опять будет верным для судов с жёстким корпусом, а не для надувных лодок, для которых самым точным определением будет следующее.
Глиссирование – это режим движения лодки, при котором наблюдается минимальная площадь смоченной поверхности днища.
Режимы движения лодки
Надувные моторные лодки имеют три основных режима движения:
Водоизмещающий режим наблюдается при остановке лодки, ходе на вёслах, а также при начальном режиме движения под мотором со скоростью до 15-16 км/час.
Переходный режим возникает при достижении надувной лодкой скорости 17- 18 км/час. При этом корма лодки может сильно проседать вниз на столько, что транец лодки с установленным на нём двигателем может оказаться на уровне воды, а нос – высоко задирается вверх. Многие начинающие водномоторники и владельцы надувных лодок именно этот режим ошибочно принимают за выход лодки на глиссирование.
Глиссирующий режим
Когда вы вышли на глиссер, происходит резкое уменьшение сопротивления движению и увеличение скорости движения лодки.
Особенность надувных моторных лодок и их отличие от судов с жёстким корпусом при выводе их в режим глиссирования заключаются в том, что они весьма чувствительны к развесовке внутри кокпита. Так, для уменьшения времени нахождения в переходном режиме рекомендуется максимально загрузить нос лодки. Некоторые владельцы надувных лодок решают это путем переноса и креплением бензобака в носовой части кокпита. Опытные водители надувных лодок при наборе скорости уменьшают время нахождения лодки в переходном режиме путем переноса массы собственного тела с кормы на середину кокпита лодки, как бы дополнительно придавливая её к поверхности воды своим весом. Эта тактика выхода на глиссер хорошо зарекомендовала себя для лодок длиной до 4 метров включительно, оборудованных ПЛМ соответствующей мощности и ручным управлением.
Что касается минимальной мощности двигателя, которой будет достаточно для вывода надувной лодки в режим глиссирования, то в отличие от хорошо изученных судов с жёстким корпусом здесь пока не существует единого подхода и мнения, а все данные носят экспериментальный характер.
Так, в водномоторной среде хорошо известен следующий постулат, который гласит, что «для того, чтобы судно вывести на глиссер, требуется мощность не менее 40-50 л.с. на тонну в зависимости от обводов корпуса».
Говоря простым языком, выход судна на глиссирование происходит, когда на каждые 20-25 кг. его водоизмещения имеется не менее одной лошадиной силы. Причём в этот расчёт берётся всё – вес лодки, мотора, пассажиров и груза. Но, как показывает практика – эта схема расчёта абсолютно не подходит для надувных лодок, показатель удельной массы для которых должен быть меньше.
Что показали наши тесты?
Комплект: килевая лодка «Ривьера 3400 КОМПАКТ» (вес по-паспорту 48 кг.) + ПЛМ Mercury 5 М (сухой вес 20 кг.) + топливо (4 кг.) + водитель (вес 115 кг). Итого общий вес 187 кг. – показал уверенный выход на глиссер и максимальную скорость 25 км/час. Хотя следуя вышеприведённым расчетам для судов с жёстким корпусом минимальная мощность двигателя для выхода этого комплекта в режим глиссирования должна составлять от 7.48 до 9.35 л.с.
Или вот другой пример: плоскодонная лодка АКВА 2800 ( 23 кг.) + /catalog/motors/lodochnyj-motor-mercury/2-taktnyje-motory-mercury/mercury_outboard_motor_5_m/ (20 кг.) + водитель (115 кг.). Итого общий вес 158 кг. Результат – выход на глиссирование и максимальная скорость 26.8 км/час. Хотя опять-таки следуя расчётам, мощность двигателя для этого комплекта должна находится в диапазоне от 6.32 до 7.9 л.с.
Экспериментальным путём был выявлен следующий алгоритм выхода классических надувных лодок (исключая надувные катамараны и лодки с НДНД) в режим глиссирования в зависимости от их длины, загрузки и мощности ПЛМ.
Расчет глиссирования
Длина лодки от 340 до 360 см. Для выхода в режим глиссирования с 1 человеком на борту достаточно мощности 8 л.с. Каждый следующий человек + 5 л.с. Пример: для лодки длиной 350 см. с загрузкой 2 человека – минимальная мощность двигателя для выхода на глиссер составит 10 л.с. для 3-х человек на борту – 15 л.с.
Длина лодки от 380 до 400 см. – 10 л.с. для одного человека и + 5 л.с. на каждого следующего пассажира.
При длине надувной лодки свыше 400 см. рекомендуется установка поста дистанционного управления и двигатели мощностью от 25 л.с.
Управление дифферентом глиссирующего катера: излагаем в общих чертах
Теплоход «Заря-173» движется в режиме глиссирования. Хорошо видно, что корпус судна находится на гребне волны и практически не имеет дифферента. Это означает, что волновой кризис преодолён.
Надувная лодка выходит на режим глиссирования, преодолевая волновой кризис. Хорошо видно, что под корпусом судна находится горб волны. Лодка имеет значительный дифферент на корму, которая находится во впадине. Следующий горб — за кормой. Этот режим требует повышенной мощности двигателя.
Гли́ссер (фр. glisseur, от glisser — скользить) — лёгкое быстроходное судно.
Что такое глиссирование
Глиссирование – это такой вариант передвижения плавательного средства по поверхности воды, при котором судно как бы скользит по её поверхности, не раздвигая воду, как при передвижении на небольшой скорости, а удерживаясь на поверхности за счет скоростного напора воды и создаваемой им подъемной силы. Одна из особенностей такого режима передвижения – затраты усилий на выход на глиссирование гораздо больше, чем усилие, нужное для поддержания такого состояния.
С точки зрения физики, глиссирование – это наглядный пример передвижения плавательного средства в так называемой точке сверхнеустойчивого равновесия.
Основные условия, необходимые для возникновения глиссирования, это двигатель достаточной мощности и плоское днище плавательного средства. Существенный недостаток такой конструкции – низкая мореходность, особенно при значительном волнении. Частично это исправляется приданием днищу определённой формы, или, как говорят специалисты, килеватости.
Режим глиссирования
При движении глиссера, за счёт специально спроектированной формы корпуса, имеющего либо плоское днище, либо уступы на днище в виде ступеней — реданы, возникает гидродинамическая сила, компенсирующая часть силы тяжести и вызывающая общее значительное всплытие судна, которое «выходит на редан» (оно как бы скользит по поверхности воды — глиссирует). В результате существенно уменьшается площадь соприкосновения днища с водой (у спортивных судов в несколько раз), снижается вязкое сопротивление движению за счёт уменьшения смоченной поверхности и повышается скорость хода.
Этот тип судна/движения очень чувствителен к нагрузке. Незначительное увеличение нагрузки или изменение развесовки может привести к тому, что судно не сможет выйти на режим глиссирования, и продолжит движение в неэкономичном водоизмещающем режиме при числе Фруда около 1.
На глиссеры устанавливают лёгкие двигатели внутреннего сгорания, газовые турбины. Движителями служат гребные винты, водомёты, воздушные винты.
Могут глиссировать гидросамолёты при взлёте и посадке, лёгкие парусные суда, парусные доски, а также водные лыжи, вейкборды, доски под воздушным змеем.
Идея создания глиссера появилась как следствие решения проблемы, похожей на проблему преодоления звукового барьера. При приближении скорости судна к скорости распространения волны по воде получается, что судно непрерывно пытается заехать на им же образованную горку. Это явление называется волновым кризисом. Расход топлива растёт по мере роста скорости и достигает своего максимума перед выходом судна на глиссирование. Недостаток мощности и/или неподходящая форма корпуса делают режим глиссирования недостижимым. Например, 30-тонному теплоходу «Заря» для преодоления волнового кризиса требуется двигатель мощностью не менее 860 л. с. (мощность силовой установки теплохода — 1000 л. с.). После выхода на режим глиссирования этому теплоходу для движения со скоростью 45 км/ч достаточно мощности всего лишь 330 л. с.
Носовая загрузка облегчает выход на глиссирование.
Если мощность силовой установки достаточна для поддержания движения в режиме глиссирования, но недостаточна для преодоления волнового кризиса, судно тем не менее может быть выведено в режим глиссирования. Для этого необходимо установить силовой установке режим максимальной мощности и сместить центр тяжести судна вперёд по отношению к точке приложения равнодействующей гиростатической и гидродинамической сил (например, перемещением груза, пассажиров, перекачкой топлива или балласта). В результате дифферент судна на корму уменьшится, что снизит величину волнового сопротивления и позволит судну набирать скорость и перейти в режим глиссирования. Такой способ широко применяется на моторных лодках.
Глиссирование лодок ПВХ
Поливинилхлоридные надувные лодки, как и любое другое плавательное средство, могут передвигаться по водной поверхности в трёх режимах:
Главная особенность ПВХ лодок заключается в пригодности подавляющего большинства моделей для глиссирующего режима – они легкие, могут оснащаться мощными навесными моторами, а также в большинстве своем имеют плоское дно.
Практическое использование глиссеров
Глиссеры используются для перевозки пассажиров, охранной и пограничной службы, спортивных гонок, прогулок.
Глиссирующий режим движения широко распространён в современном судостроении. Это большинство маломерных судов (моторные лодки, катера, гидроциклы), небольшие пассажирские скоростные суда (например теплоходы типа «Заря»), торпедные и противолодочные катера, пожарные и спасательные суда. В условиях бездорожья значительную роль в российской глубинке играют реки, на многих своих участках сильно обмелевшие вследствие вырубки лесов по их берегам. В этой ситуации до недавнего времени большую помощь для доставки почты, пассажиров и медицинского персонала играли глиссеры с толкающим воздушным винтом. Такие суда можно было ещё в конце XX века видеть на таёжных реках, в частности на реке Пинеге. В настоящее время их значение заметно упало в связи с использованием для указанных выше целей вертолётов.
Глиссеры характеризуются сильными ударными нагрузками при движении на волнении, в связи с чем их применение в морских условиях затруднено.
Глиссеры с воздушным винтом способны передвигаться не только по воде, но и по снегу и льду.
Вы здесь
31.01.2009 Автор: 0 11094
Журнал КиЯ №6 1966г
Читатель В.П. Александров построил туристскую мотолодку по типу спортивной лодки «Старт-1». Главные элементы его судна: L=3150 мм; B=1200 мм; вес 55 кг. Скорость с мотором «Москва» при 2 чел. на борту достигает 35—38 км/час. На малом ходу углы дифферента судна умеренные, но на скоростях от 15 до 30 км/час дифферент на корму становится настолько большим, что «ходить на лодке практически неудобно». Попытки уменьшить дифферент перемещением ЦТ к носу не увенчались успехом. На наибольших скоростях от 30 до 38 км/час дифферент уменьшается и становится удовлетворительным.
Тов. Александров просит рекомендовать способ уменьшения угла дифферента на скоростях от 15 до 30 км/час. Отвечает Л. М. Кривоносов.
Дать какие-либо численные рекомендации, не имея точного теоретического чертежа и не зная фактических водоизмещения и центровки судна, трудно и рискованно. Правильное решение может быть найдено, исходя из рассмотрения явлений, вызывающих дифферент быстроходного остроскулого судна.
1. Когда судно стоит, сила его поддержания Д расположена на одной вертикали с ЦТ.
2. На судне с подвесным мотором, идущем с небольшой скоростью (на режиме плавания), упор винта создает момент Му относительно ЦТ, дифферентующий судно на корму. При этом объем корпуса, погруженный в воду, увеличивается в корме и соответственно уменьшается в носу, в связи с чем общая сила поддержания, оставаясь неизменной по величине, перемещается к корме и создает момент Мп, уравновешивающий момент упора (рис. 1).
Строго говоря, сопротивление тоже оказывает влияние на дифферент, но оно так мало, по сравнению с влиянием других сил, что им можно пренебречь.
3. Когда судно идет на переходном режиме, на его днище действует гидродинамическая подъемная сила Г. Отстояние точки приложения этой силы от передней кромки смоченной поверхности днища составляет примерно четверть всей смоченной длины днища. На этом режиме гидродинамическая подъемная сила, растущая одновременно со скоростью хода и расположенная на значительном расстоянии от ЦТ, создает все увеличивающийся со скоростью дифферентующии момент Мг.
Одновременно с гидродинамической подъемной силой на переходном режиме по мере роста скорости растет сопротивление, а следовательно, возрастает упор и его дифферентующии момент. В то же время по мере роста гидродинамической подъемной силы судно всплывает, и сила поддержания уменьшается. Поэтому, прежде чем возникнет момент силы поддержания Мп, способный уравновесить большой суммарный дифферентующий момент Мг + Му, судно приобретет большой и растущий со скоростью дифферент (рис. 2).
Когда судно достигает скорости V, на которой сопротивление R имеет наибольшее значение, упор и его дифферентующии момент также достигают максимума, поэтому горбу кривой сопротивления всегда соответствует горб кривой углов дифферента (рис. 3).
Напомним, что гидростатическая сила поддержания судна на переходном режиме глиссирования определяется объемом клина ОАБ, расположенного под уровнем спокойной воды, минус объем воды в клине ОВГ, поднятом над уровнем воды (рис. 4).
4. Когда с дальнейшим ростом скорости гидродинамическая подъемная сила, возрастая, заставляет судно значительно всплыть, длина смоченной поверхности днища уменьшается настолько, что точка приложения подъемной силы приближается вплотную к ЦТ, отчего дифферентующий момент этой силы исчезает. На этом режиме (режиме глиссирования) моментом, дифферентующим на корму, остается лишь момент упора; а так как на некотором участке скоростей, следующих за «скоростью горба», сопротивление либо падает, либо остается неизменным, то упор и его дифферентующий момент также либо падают, либо остаются неизменными. Хотя гидростатическая сила поддержания на этих скоростях и не велика, ее достаточно, чтобы уравновесить уменьшающийся дифферентующий момент; поэтому на этом участке скоростей углы Дифферента уменьшаются.
5. При дальнейшем увеличении скорости хода сопротивление, упор и дифферентующий на корму моменты вновь возрастают. Однако на этих скоростях точка приложения гидродинамической подъемной силы, перемещающаяся благодаря всплыванию судна к корме, оказывается расположенной в корму от ЦТ (рис. 5). При таком расположении этой силы на судно действует больший момент, дифферентующий судно на нос, в связи с чем углы Дифферента с увеличением скорости падают, несмотря на то, что гидростатическая подъемная сила поддержания и ее момент очень малы.
Если на переходном режиме дифферентующий момент по какой-либо причине внезапно изменяется (например, от удара днища о волну), то гидростатическая сила поддержания, плавно изменяющаяся пропорционально углу дифферента, принимает на себя роль амортизатора. Благодаря этому изменения углов дифферента на этом режиме имеют характер килевой качки.
На больших же скоростях глиссирования, когда сила поддержания и углы Дифферента очень малы, даже небольшое изменение дифферентующего момента вызывает резкое изменение величины и положения гидродинамической подъемной силы, отчего изменение углов Дифферента на этом режиме носит характер тряски.
Из приведенного рассмотрения видно, что для уменьшения дифферента на переходном режиме надо:
1) уменьшать момент гидродинамической подъемной силы;
2) увеличивать момент гидростатической силы поддержания;
3) уменьшать момент упора.
Последний путь, требующий подъема винта или изменения наклона его оси, представляется трудноосуществимым.
Уменьшать дифферентующий момент гидродинамической подъемной силы целесообразно лишь смещением точки приложения этой силы в корму. Этого можно достичь Отгибом кормовой части днища вниз (рис. 6). Как показывают опыты с глиссирующими пластинами, гидродинамическое давление (рис. 7, а) на пластине, продольно изогнутой по радиусу R, несколько больше и распределено более равномерно, чем на прямолинейной пластине (рис. 7, б).
Такой отгиб на уже построенном судне можно осуществить в виде постоянной клинообразной наделки (клина) К, прикрепляемой к кормовой части днища (рис. 8). Угол клина не следует делать более 1° с тем, чтобы после опробования его можно было увеличить; толщина клина у основания должна быть 15— 20 мм в зависимости от длины судна и обводов днища. Слишком крутой отгиб может на больших скоростях хода существенно изменить углы атаки днища в невыгодную сторону и явиться причиной уменьшения скорости и появления тряски кормы.
Более эффективным средством является установка отогнутого книзу продолжения днища за транцем. Это средство смещает в корму одновременно точки приложения гидродинамической и гидростатической сил. Такую транцевую плиту (рис. 9) лучше соединить с днищем шарнирно и фиксировать при помощи регулируемого крепления типа талрепов (тандеров) для возможности опытного определения оптимального угла ее установки, который может быть различным в зависимости от нагрузки и скорости хода судна.
За границей несколько фирм выпускают аналогичного назначения устройства с электромеханическим или гидравлическим приводом, позволяющим регулировать угол отклонения транцевых плит на ходу судна. Регулируемые транцевые плиты могут выполняться двойными разрезными (рис. 10).
При Этом, кроме своего основного назначения — создавать наивыгоднейший угол дифферента при различных нагрузках судна, устройство это используется и при крутых поворотах или при других обстоятельствах, когда возникает необходимость уменьшить крен судна; водитель опускает левую или правую часть транцевой плиты и тем самым создает момент, выравнивающий крен.
Для уменьшения углов дифферента могут служить и другие сходные устройства, например, короткие пластины или подводные крылышки, устанавливаемые с бортов в корме и убирающиеся при помощи простого шарнирного механизма.
Как выйти на глиссирование
В случае с поливинилхлоридными лодками, осуществляется выход на глиссирование достаточно просто – после удаления от берега, а также от разнообразных преграждающих путь объектов, нужно плавно дать «полный газ», а после достижения режима глиссирования можно сбросить газ до половины – благодаря экономичности этого будет вполне достаточно для поддержания нужной скорости.
Лодка не выходит на глиссирование
Причины недоступности для плавательного средства глиссирующего режима могут быть следующими:
Как улучшить
Существует несколько способов, позволяющих улучшить выход плавательного средства на глиссирующий режим передвижения:

В случае если причиной плохого, неполного или долгого выхода лодки на глиссирующий режим является гребной винт, можно предложить следующие варианты:



