Бескислородная медь – электролитическая медь, свободная от медных оксидов, произведена без использования остаточных металлических или металлоидных раскислителей.
Если сравнивать физические и механические свойства двух сортов меди (бескислородной OF-Cu и содержащей кислород E-Cu), то видно, что существенных отличий нет. Оба сорта меди одинаково хороши в случае применения их там, где важную роль играет тепло- и электропроводность, коррозийная устойчивость, сопротивление к износу и способность деформироваться.
Исходя из вышесказанного рекомендовано её применение в вакуумной технике при изготовлении вакуумных распределительных устройств и полупроводников, при изготовлении электронных приборов. Важно применение меди сорта OF-Cu в производстве космической техники, в частности при изготовлении линейных ускорителей и сверхпроводников.
Кроме вышеуказанных областей применения бескислородной меди можно ещё назвать: микроэлектронику, радио- и приборостроение (тонкопленочные технологии и кабели в аудиосистемах обеспечивают высокую проводимость, что снижает степень искажения звука и уровень посторонних шумов), атомную энергетику, ювелирную и строительную промышленность (трубы и провода для работы в сильных электромагнитных полях, аноды в электрохимии и т.д.).
Кислородосодержащие сорта меди типа E-Cu57 и E-Cu58 имеют также высокую электропроводимость и рекомендованы для изготовления обычных распределительных устройств, для применения в электронной и электротехнической промышленности в случаях, не требующих наличие свойств характерных для бескислородной меди OF-Cu.
Главный недостаток меди сорта E-Cu заключается в том, что при высоких температурах водород, находящийся в пространстве соединяется медными оксидами, содержащимися в раскалённой меди, образуя медный пар, который расширяет кристаллическую структуру и делает материал хрупким и ломким (так называемая водородная болезнь). Поэтому медь сорта E-Cu не рекомендована для сварки и высокотемпературной пайки.
«Чистый металл», или Электролитическое рафинирование меди
Рафинирование — заключительный этап в цепочке получения из медной руды «чистого» металла. Он состоит из двух последовательных этапов — пирометаллургическое и электролитическое рафинирование. В первом черновая медь (содержит до 4 % примесей) обрабатывается в печах и из неё удаляются все примеси, кроме включений серебра, золота, селена и теллура, при этом чистота основного металла может достичь 99,6 %. Во втором с помощью электролитических ванн получают полностью очищенную медь, доля примесей в которой не превышает 0,001 %.
Рассмотрим подробнее процесс электролитического рафинирования. Речь идёт исключительно о промышленном производстве, в работе чаще всего используются гальванические ванны объемом 4-12 м 3 метра, в качестве электролита выступает смесь из сернокислой меди (CuSO4), подкисленной серной кислотой (H2SO4). В смесь погружаются аноды из меди, прошедшей пирометаллургическое рафинирование, и катоды из «чистой» меди. В ходе электролиза все примеси остаются в растворе электролита, а на катоде оседает очищенный металл. После завершения процесса катод, по сути, представляет собой готовый слиток меди, который можно как отправить предприятиям-потребителям напрямую, так и переплавить в слитки или иной требуемый тип проката. Часть «вымытых» из меди примесей оседает на дно ванны (т.н. шлам), в дальнейшем их можно подвергнуть последующей переработке с целью получения ценных металлов.
Промышленный процесс электролитического рафинирования предполагает работу с большими объёмами металлов, электролитов и, как следствие, высокие сопутствующие затраты (стоимость электролитов, электричество, потери и т. д.). В ходе рафинирования анод («загрязнённая» медь) постепенно растворяется, теряя в объёме — часть примесей оседает на дно ванны, часть растворяется в электролите. При этом чистая медь нарастает на катоде, постепенно увеличивая его в размерах. Начальная фаза изображена на рисунке ниже.
В рафинировании меди применяется такое понятие как экономическая плотность тока — плотность тока, при которой затраты электроэнергии на получение 1 тонны чистой меди будут минимальными (не путать с таковой при расчете сечения проводов, когда идет расчет электрических потерь в ЛЭП).
При этом время процесса зачастую бывает не оптимальным или вовсе не принимается во внимание из-за решающей роли стоимости электричества. Так, в среднем, на растворение анода требуется 20-30 суток, а катоды достигают оптимального размера за 6-12 суток при стандартной плотности тока 170-200 А/м 2 и напряжении между анодом и катодом 0,3-0,4 В. Расход электроэнергии при этом составляет в среднем 230-350 кВт⋅ч на 1 тонну меди.
Тем не менее, время тоже является важным фактором, напрямую влияющим как на себестоимость процесса получения медного проката, так и на общую производительность предприятия. Уменьшить время процесса рафинирования можно одним способом — увеличением плотности тока до более высоких, по сравнению со стандартными, значений. При этом, разумеется, придётся изменять многие параметры процесса, чтобы использование токов высокой плотности оставалось в рамках «экономической плотности». Для выполнения этого условия в ход идут различные методики, дополняющие друг друга:
Все описанные выше средства в настоящее время активно исследуются и совершенствуются на многих металлургических предприятиях в России и за рубежом. Основной их целью является не только ускорение процесса, но и обеспечение его непрерывности и повышение эффективности, в том числе экономической.
Первые два способа, как правило, обкатываются непосредственно на предприятиях в ходе экспериментов:
Использование же реверсных токов зачастую становится самым доступным методом — для его внедрения в промышленный процесс достаточно изменить схему питания гальванической ванны, применив современный источник тока и обеспечив циркуляцию электролита.
Хорошим решением этой задачи будет использование источников питания российского предприятия «Навиком», разрабатывающего источники питания для промышленного применения.
Смотреть что такое «Электролитическая медь» в других словарях:
электролитическая медь — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electrolytic copper … Справочник технического переводчика
электролитическая медь — elektrolitinis varis statusas T sritis fizika atitikmenys: angl. electrolytic copper vok. Elektrolytkupfer, n rus. электролитическая медь, f pranc. cuivre électrolytique, m … Fizikos terminų žodynas
вязкая электролитическая медь — мягкая электролитическая медь — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы мягкая электролитическая медь… … Справочник технического переводчика
МЕДЬ — (символ Сu), переходный элемент красно розового цвета. Красноватая медь встречается в виде самородков, а также в составе нескольких руд, в том числе, куприта (оксид меди) и халькопирита (сульфид меди). Руды извлекают из окружающей их породы и… … Научно-технический энциклопедический словарь
Электролитическая растворимость — Нернст назвал электролитической растворимостью, в отличие от обыкновенной растворимости, случай, когда одновременно с растворением вещества происходят электрические явления. Типичный случай такой растворимости наблюдается для металлов. При… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
МЕДЬ ЭЛЕКТРОЛИТИЧЕСКАЯ — ELECTROLYTIC COPPERСм. МЕДЬ … Энциклопедия банковского дела и финансов
Бескислородная медь — Бескислородная медь электролитическая медь, свободная от медных оксидов. В меди, полученной из руды электролизом, присутствует значительное количество оксида меди, который, при последующем отжиге в атмосфере водорода, взаимодействует с ним… … Википедия
Безкислородная медь — Oxygen free copper Безкислородная медь. Электролитическая медь, свободная от медных оксидов, произведенная без использования остаточных металлических или металлоидных раскис лителей. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П.… … Словарь металлургических терминов
Рафинирование черновой меди от примесей по экономическим соображениям проводят в две стадии — вначале методом огневого рафинирования, а затем электролитическим методом.
Огневое рафинирование
Цель огневого рафинирования — подготовить медь к электролитическому рафинированию путем удаления из нее основного количества примесей. Огневое рафинирование жидкой меди (на медеплавильных заводах) проводят в цилиндрических наклоняющихся печах, а на медьэлектролитных заводах, получающих черновую медь в слитках, — в стационарных отражательных печах. Печи для огневого рафинирования часто называют анодными, так как после рафинирования жидкую медь разливают в аноды — слитки, имеющие форму пластин.
Наклоняющиеся (поворотные) цилиндрические печи схожи с горизонтальным конвертером, применяемым для выплавки штейна. Для выпуска меди предусмотрена летка, наиболее распространены печи вместимостью 160—220 т. Стационарные печи вместимостью до 500 т по устройству схожи с отражательной печью для выплавки штейна.
Огневое рафинирование в отражательной печи длится
24 ч и включает следующие периоды: загрузка (длится до 2 ч), расплавление (
10 ч) окислительная обработка расплава, удаление шлака, восстановительная обработка, разливка готовой меди. Рафинирование в цилиндрических печах, где не требуется плавления меди, длится примерно в два раза меньше и состоит из четырех последних периодов процесса в отражательной печи.
Окислительная обработка длительностью 1,5—4 ч заключается во вдувании в ванну воздуха через погруженные на глубину 600—800 мм стальные трубки, покрытые огнеупорной обмазкой. При этом окисляются примеси с ббльшим, чем у меди химическим сродством к кислороду — такие как Al, Fe, Zn, Sn, Sb, Bi, As, Ni и немного меди до Cu2O. Полностью остаются в меди золото и серебро и большая часть селена и теллура. Оксиды примесей, Cu2O и загружаемый в печь в небольших количествах кремнезем образуют на поверхности ванны шлак, который в конце окислительной продувки удаляют из печи деревянными гребками.
Восстановительную обработку ванны (дразнение) длительностью 2,5—3 ч проводят для раскисления меди (удаления кислорода, содержащегося после окислительной продувки в количестве до 0,9% в виде Cu2O) и удаления растворенных газов. Ранее дразнение проводили погружением в расплав сырой древесины (жердей, бревен), в настоящее время — путем вдувания паромазутной смеси или природного газа. Вдуваемые вещества разлагаются с образованием Н2, СО и СН4, которые, выделяясь, вызывают перемешивание ванны и удаление растворенных газов (SO2, СO2 и др.), а также раскисляют ванну, восстанавливая Cu2O (например по реакции Cu2O + Н2 = 2Cu + Н2O). После дразнения медь, содержащую
Электролитическое рафинирование
При электролитическом рафинировании решаются две задачи — глубокое рафинирование меди от примесей, что обеспечивает ее высокую электропроводность, и попутно извлечение ценных золота, серебра и селена.
Электролиз ведут в ваннах ящичного типа длиной 3—5,5, шириной 1 и глубиной 1,2—1,3 м, футерованных внутри кислотостойкими материалами (винипласт, стеклопластик и др.). В ванне подвешивают аноды и между ними катоды — пластины из чистой меди.
Растворение анода длится 20—30 сут, катоды выгружают через 6—12 сут. Удельный расход электроэнергии равен 230—350 кВт • ч на 1 т меди.
Часть катодов направляют потребителям, а основное количество переплавляют для получения слитков и литых заготовок. Катоды расплавляют в отражательных и шахтныхпечах с отоплением природным газом, в электродуговых и индукционных печах. Жидкую медь разливают на карусельных разливочных машинах в вайербасы (заготовки для прокатки проволоки) или в слитки различной формы. Разливку произ-водят также на установках непрерывной и полунепрерывной разливки, получая литые заготовки требуемого сечения. Применяют литейно-прокатные агрегаты, где отливаемую на УНРС заготовку обжимают в прокатных валках агрегата до получения прутка (катанки) или полосы.