Флавоноидов таблетки для чего
Очищенная микронизированная флавоноидная фракция (Диосмин + Флавоноиды в пересчёте на гесперидин)
Фармакологическое действие
Комбинированный препарат, обладает венотонизирующим и ангиопротекторным свойствами. Препарат уменьшает растяжимость вен и венозный застой, снижает проницаемость капилляров и повышает их резистентность. Результаты клинических исследований подтверждают фармакологическую активность препарата в отношении показателей венозной гемодинамики.
Статистически достоверный дозозависимый эффект препарата был продемонстрирован для следующих венозных плетизмографических параметров: венозной ёмкости, венозной растяжимости, времени венозного опорожнения. Оптимальное соотношение «доза-эффект» наблюдается при приёме 1 000 мг/сут.
Повышает венозный тонус: с помощью венозной окклюзионной плетизмографии было показано уменьшение времени венозного опорожнения. У пациентов с признаками выраженного нарушения микроциркуляции после терапии препаратом отмечается (статистически достоверное, по сравнению с плацебо) повышение капиллярной резистентности, оценённой методом ангиостереометрии.
Доказана терапевтическая эффективность препарата при лечении хронических заболеваний вен нижних конечностей, а также при лечении геморроя.
Уменьшает нежелательные побочные эффекты инвазивных методов лечения хронических заболеваний вен (снижает частоту нежелательных побочных явлений при хирургическом и эндоваскулярном лечении варикозной болезни: достоверно снижает интенсивность послеоперационного болевого синдрома, отёк и выраженность кровоизлияний после эндоваскулярного и хирургического лечения).
Фармакокинетика
Основное выведение препарата происходит с калом. С мочой, в среднем, выводится около 14 % принятого количества препарата. Период полувыведения (T½) составляет 11 часов.
Препарат подвергается активному метаболизму, что подтверждается присутствием феноловых кислот в моче.
Показания
Терапия симптомов хронических заболеваний вен (устранения и облегчения симптомов).
Терапия симптомов венозно-лимфатической недостаточности:
Терапия проявлений венозно-лимфатической недостаточности:
Симптоматическая терапия острого и хронического геморроя.
Противопоказания
Повышенная чувствительность к действующему веществу или вспомогательным веществам, входящим в состав препарата; непереносимость фруктозы.
Не рекомендуется приём препарата кормящим женщинам.
Беременность и грудное вскармливание
Применение при беременности
В экспериментальных исследованиях на животных не выявлено тератогенных эффектов.
До настоящего времени не было сообщений о нежелательных эффектах при применении препарата беременными женщинами.
Применение в период грудного вскармливания
Из-за отсутствия данных относительно выведения препарата с грудным молоком, кормящим женщинам не рекомендуется приём препарата.
Влияние на репродуктивную функцию
Исследования репродуктивной токсичности не показали влияния на репродуктивную функцию у крыс обоего пола.
Способ применения и дозы
Режим дозирования индивидуальный, в зависимости от показаний и лекарственной формы.
Побочные действия
Со стороны центральной нервной системы
Редко — головокружение, головная боль, общее недомогание.
Со стороны желудочно-кишечного тракта
Часто — диарея, диспепсия, тошнота, рвота; нечасто — колит; неуточнённой частоты — боль в животе.
Со стороны кожных покровов
Редко — кожная сыпь, кожный зуд, крапивница; неуточнённой частоты — изолированный отёк лица, губ, век; в исключительных случаях — ангионевротический отёк.
Передозировка
Случаев передозировки не описано.
Взаимодействие
Следует информировать лечащего врача обо всех применяемых пациентом препаратах.
Меры предосторожности
При обострении геморроя назначение препарата не заменяет специфического лечения других анальных нарушений. В том случае, если симптомы не исчезают после рекомендуемого курса терапии, следует пройти осмотр у проктолога, который подберёт дальнейшую терапию.
При наличии нарушений венозного кровообращения максимальный эффект лечения обеспечивается сочетанием терапии со здоровым (сбалансированным) образом жизни; желательно избегать долгого пребывания на солнце, длительного пребывания на ногах, а также рекомендуется снижение избыточной массы тела. Пешие прогулки и, в некоторых случаях, ношение специальных чулок (компрессионного трикотажа) способствует улучшению циркуляции крови.
Влияние на способность к вождению автотранспорта и управлению механизмами
Препарат не влияет на способность управлять автомобилем и выполнять работы, требующие высокой скорости психических и физических реакций.
Вклад флавоноидов в здоровое сердце
Материалы и методы
Исследование было опубликовано в онлайн-журнале Hypertension.
Ученые стремились оценить, в какой степени состав кишечного микробиома может объяснить связь обычного приема пищи, богатой флавоноидами, с систолическим и диастолическим артериальным давлением.
Была получена выборка из 904 человек в возрасте 25-82 лет.
Данные были получены из немецкого биобанка PopGen.
Исследователи оценивали потребление пищи участниками, микробиом кишечника и уровни артериального давления вместе с другим клиническим и молекулярным фенотипом при регулярных последующих обследованиях.
Потребление участниками продуктов, богатых флавоноидами в течение предыдущего года, было рассчитано на основе анкетного опроса о продуктах питания, в котором подробно описаны частота и количество съеденных 112 продуктов, а значения флавоноидов были присвоены продуктам в соответствии с данными Министерства сельского хозяйства США о содержании флавоноидов в продуктах питания.
Микробиом кишечника участников оценивался по ДНК бактерий, выделенной из образцов стула.
После ночного голодания уровень артериального давления участников измерялся 3 раза с 3-минутными интервалами после первоначального 5-минутного периода отдыха.
Исследователи также собрали информацию о диете и образе жизни участников.
Заключение
Новое исследование предполагает, что более высокое потребление продуктов, богатых флавоноидами, таких как ягоды, яблоки, чай и красное вино, связано с клинически значимым снижением уровня артериального давления, что частично объясняется функционированием бактерий в микробиоме кишечника человека.
В популяционном исследовании с участием более 900 человек, у тех, кто потреблял больше всего флавоноидсодержащих продуктов, было значительно более низкое систолическое артериальное давление и пульсовое давление, а также большее разнообразие кишечных микробов.
По словам исследователей, до 15% этой наблюдаемой ассоциации объясняется микробиомом кишечника, что позволяет предположить, что эти микробы играют ключевую роль в метаболизме флавоноидов для усиления их кардиопротекторных эффектов.
В отличие от многих других компонентов пищи, флавоноиды преимущественно метаболизируются в кишечнике, что позволяет предположить, что микробиом кишечника может быть более важным для повышения их биологической активности, чем для других продуктов питания.
Лучшее понимание сугубо индивидуальной изменчивости метаболизма флавоноидов может очень хорошо объяснить, почему некоторые люди имеют больше преимуществ для защиты сердечно-сосудистой системы от продуктов, богатых флавоноидами, чем другие.
Основываясь на диетических рекомендациях AHA, широкий спектр растительных продуктов будет способствовать потреблению многих флавоноидов, которые продемонстрировали преимущества для сердечно-сосудистой системы, такие как снижение систолического артериального давления, как сообщают авторы, а также содействие здоровой функции эндотелия и наличие антитромботических, противовоспалительных и антиоксидантных эффектов.
Необходимы дальнейшие исследования, чтобы подтвердить полученные результаты и определить, как различные продукты питания влияют на определенные кишечные бактерии, которые благоприятно влияют на сердечно-сосудистую систему.
Флавоноидов таблетки для чего
Кафедра терапии, клинической фармакологии и скорой медицинской помощи Московского государственного медико-стоматологического университета им. А.И. Евдокимова, Москва, Россия
Фармакология препаратов, применяющихся при хронических заболеваниях вен
Журнал: Хирургия. Журнал им. Н.И. Пирогова. 2019;(2): 106-109
Талибов О. Б. Фармакология препаратов, применяющихся при хронических заболеваниях вен. Хирургия. Журнал им. Н.И. Пирогова. 2019;(2):106-109.
Talibov O B. Pharmacology of the drugs prescribed for chronic venous diseases (in Russian only). Khirurgiya. 2019;(2):106-109.
https://doi.org/10.17116/hirurgia2019021106
Кафедра терапии, клинической фармакологии и скорой медицинской помощи Московского государственного медико-стоматологического университета им. А.И. Евдокимова, Москва, Россия
Рассмотрены основные группы лекарственных препаратов, применяющихся для фармакотерапии хронического заболевания вен. Описаны основные терапевтические мишени лекарств, приведены данные об их влиянии на тонус венозной стенки, проницаемость и воспаление.
Кафедра терапии, клинической фармакологии и скорой медицинской помощи Московского государственного медико-стоматологического университета им. А.И. Евдокимова, Москва, Россия
Хронические заболевания вен (ХЗВ) нижних конечностей характеризуются симптомами венозной гипертензии, возникшей в результате структурных или функциональных нарушений венозной стенки и клапанов. Вторичные изменения могут проявляться рефлюксом и/или обструкцией.
Цель фармакотерапии — уменьшение выраженности или устранение субъективных и некоторых объективных (отеки) симптомов ХЗВ, а также профилактика и снижение выраженности нежелательных явлений после проведения хирургических вмешательств [1].
Потенциальными точками приложения фармакотерапии являются подавление воспаления, включая адгезию лейкоцитов к эндотелию, в первую очередь в подклапанных областях и участках тромбообразования; уменьшение выброса в кровь сигнальных молекул; регулирование тонуса и проницаемости венозной стенки; эндотелийпротективный эффект, включая регуляцию обмена и оксигенации тканей венозной стенки; подавление свободнорадикального повреждения клеточных структур; уменьшение активности матриксных металлопротеиназ; подавление локальной агрегации тромбоцитов, активация фибринолиза; улучшение лимфатического дренажа [2].
Лекарственные препараты, применяемые для лечения ХЗВ и оказывающие воздействие на вены, традиционно носят название флеботропные препараты. Несмотря на то что это и некоторые другие названия (веноактивные препараты, флебопротекторы, венотоники) нельзя признать однозначно корректными, так как они отражают только один из аспектов действия препаратов, употребление этих терминов стало привычным и узаконено в ряде клинических рекомендаций.
В анатомо-терапевтическо-химической классификации эта группа лекарств отнесена к капилляростабилизирующим средствам (C05C) и представлена следующими категориями:
— C05CX — прочие капилляростабилизирующие средства [3].
На сегодняшний день большинство лекарств, применяемых для лечения ХЗВ имеет растительное происхождение. В таблице Классификация основных веноактивных препаратов перечислены группы лекарств с указанием их наиболее распространенных представителей.
Биофлавоноиды
Биофлавоноиды представляют собой полифенольные соединения, в основе которых находится флавоновая структура (рис. 1). Рис. 1. Биофлавоноиды. 1 — приведены структуры агликонов — активных метаболитов диосметин; 2 — гесперетин; 3 — кверцетин; 4 — гидросметин. В зависимости от химической структуры (двойная связь С2=С3 и наличие присоединенной к С3 группы –СН3) флавоноиды разделяются на подклассы: флавонолы (кверцетин, кемпферол), флаваноны (гесперидин), флавоны (диосмин, лютеолин) и т. д. Всего в природе описано более 5000 флавоноидных соединений.
Диосмин и его комбинации с другими флавоноидами 1
Диосмин является одним из наиболее часто применяемых препаратов в группе флавоноидов. Диосмин применяется как самостоятельно («очищенный» диосмин), так и в виде фракции с гесперидином (последний отличается от диосмина отсутствием одной двойной связи между C2 и С3) в соотношении 9:1.
Лекарственная форма, при получении которой использован процесс микронизации получила название микронизированной очищенной флавоноидной фракции (МОФФ). Кроме стандартизованного количества диосмина и гесперидина, в состав МОФФ входят другие биофлавоноиды (изороифолин, линарин), однако их количество не имеет самостоятельного фармакологического значения [4].
Основные молекулы (диосмин и гесперидин), входящие в состав препаратов, представляют собой пролекарства, т. е. они не активны и не оказывают эффекты в тропных органах и тканях. Только после гидролиза ферментами кишечной флоры от диосмина и гесперидина отделяется дисахаридная структура (рутиноза), обусловливающая хорошую растворимость в воде, но недостаточное проникновение через биологические мембраны. После чего метаболиты, обладающие лучшей жирорастворимостью, диосметин и гесперитин, соответственно, всасываются в системный кровоток и оказывают основные эффекты.
Следует также отметить, что в результате метаболизма первой фазы в организме человека возможно превращение флавонов в флаваноны, в частности в эксперименте после приема только очищенного диосмина в плазме начинали обнаруживаться не только диосметин, но и гесперитин [5].
Под влиянием диосметина увеличиваются тонус венозной стенки и скорость лимфотока. Кроме того, диосметин уменьшает проницаемость капилляров. За счет этого действия уменьшается степень периферических отеков. Предположительно механизм этого эффекта связан со способностью диосметина ингибировать фермент катехоламин-О-метилтрансферазу, ответственный за деградацию норадреналина. Таким образом, локальное накопление норадреналина способствует поддержанию относительно высокого тонуса венозной стенки.
Еще одним механизмом, ответственным за увеличение тонуса гладкой мускулатуры под влиянием диосметина является повышение чувствительности миоцитов к ионам кальция [6].
Отдельным механизмом воздействия диосметина на течение ХЗВ является его противовоспалительный эффект. Он обусловлен способностью диосметина модулировать взаимодействие лейкоцитов и моноцитов с эндотелием, уменьшать способность иммунокомпетентных клеток крови к адгезии к венозной стенке, что в итоге тормозит тромбоцит- и комплементзависимые механизмы высвобождения гистамина и сигнальных молекул. В итоге это приводит к уменьшению степени проницаемости сосудов [7].
Кроме того, флавоноиды способствуют уменьшению экспрессии L-селектина и интегринов на мембране лейкоцитов, что также снижает воспалительный ответ.
Еще одним возможным механизмом действия диосмина является его влияние на концентрацию в крови молекул адгезии сосудистой стенки. У пациентов с ХЗВ повышены уровни ICAM-1 (inter-cellular adhesion molecule — молекула клеточной адгезии) и VCAM-1 (vascular cell adhesion molecule — сосудистая молекула клеточной адгезии). Любопытно, что такое же повышение уровня VCAM-1 и ICAM-1 наблюдается у практически здоровых людей после многочасового стояния, т. е., скорее всего, является проявлением застоя крови в нижних конечностях. Снижение под влиянием диосмина экспрессии этих молекул приводит к тому, что клетки крови «не зацепляются» за сосудистые стенки, несмотря на способствующий этому застой крови [8].
Как препараты «очищенного» диосмина, так и комбинация диосмина с гесперидином удовлетворительно переносятся пациентами. Кроме того, несмотря на теоретическую возможность активации цитохромальной системы печени (CYP1A2 в первую очередь) через арил-гидрокарбоновый рецептор, для этой группы не описано важных негативных лекарственных взаимодействий [9].
Гидросмин
Гидросмин так же относится к группе биофлавоноидов. Имеет сходную с диосмином структуру – химически представляет собой 5,3-моно-О-(β-гидроксиэтил)-диосмин и 5,3-ди-О-(β-гидроксиэтил)-диосмин.
Будучи связанным с рутинозидом, является пролекарством, из которого с участием кишечной флоры высвобождается и попадает в системный кровоток действующее вещество гидросметин. Обладает венотонизирующим и противоотечным эффектом, сходным с препаратами диосмина. Предположительный механизм действия — замедление деградации норадреналина посредством ингибирования фермента катехоламин-О-метилтрансферазы с последующим повышением венозного тонуса и уменьшением проницаемости сосудистой стенки [10].
Рутин и рутозиды
Оксерутин представляет собой стандартизованную смесь моно-, ди-, три- и тетрагидроксиэтилрутозидов — производных рутина (кверцетина) [11].
Механизм действия основан на уменьшении проницаемости сосудистого эндотелия и подавлении адгезии нейтрофилов и тромбоцитов к стенке сосуда. Кроме того, для препаратов этой группы описана способность модулировать текучесть мембран эритроцитов [12, 13].
Для кверцетина описана ингибирующая активность в отношении кальмодулин-зависимых ферментов, что приводит к торможению процесса дегрануляции тучных клеток. Возможно, противовоспалительная активность кверцетина реализуется через еще один механизм — подавление образования фактора некроза опухоли-альфа (TNF-a) [14, 15].
Имеются данные, что в отличие от препаратов группы диосмина, рутозиды не повышают сосудистый тонус, а напротив, уменьшают сосудосуживающий ответ на воздействие адреналином и хлоридом калия в эксперименте [16].
К этой группе препаратов также относятся троксерутин и моноксерутин, имеющие сходные фармакологические свойства.
Переносимость рутиновых производных удовлетворительная и мало отличается от переносимости группы диосмина.
Сапонины
Сапонины — гликозидные органические соединения, разделяющиеся по наличию или отсутствию поверхностно-активной и гемолитической активности. Как и флавоноиды, состоят из агликона и углеводной части. Стероидные сапонины синтезируются из холестерина, а тритерпеновые — напрямую из сквалена. Тритерпеновые сапонины делятся в зависимости от количества в структуре агликона углеводных колец на тетра- и пентациклические.
Аэсцин
Кроме того, аэсцин может увеличивать чувствительность 5-HT (5-гидрокситриптамин) рецепторов к серотонину — один из механизмов, за счет которого осуществляется передача сигнала для повышения венозного тонуса [18].
Экстракт рускуса
Препарат, представляющий собой экстракт иглицы шиповатой, содержащий группу пентациклических сапонинов, в первую очередь рускозид и рускогенин. Помимо этого, в состав экстракта входят флавоноиды (производные рутина). Несмотря на то что для алкалоидов этой группы так же как и для других, описано благоприятное воздействие на тонус венозной стенки, экстракт хуже стандартизован по основным действующим веществам.
Кроме того, для препарата описано гипертензивное действие, в частности он применялся для лечения ортостатической гипотензии [19].
Прочие растительные препараты
Водорастворимая фракция флавоноидов из красных виноградных листьев
Комплекс флавоноидов, представленный в основном изокверцетином, кверцетин-глюкуронидом, кверцетин-глюкозидом и кемпфлеролом (стандартизация содержания осуществляется по двум первым компонентам). В отличие от рассмотренных ранее препаратов биофлавоноидов, кверцетин-глюкуронид для всасывания не требует этапа предварительного бактериального метаболизма в кишечнике.
Теоретически ожидаемые эффекты сводятся к эффектам других биофлавоноидных препаратов. Особенности фармакокинетики не имеют клинического значения. В связи с отсутствием опыта соответствующего применения препарат противопоказан беременным [20].
Гинкго билоба
Экстракт листьев гинкго двулопастного содержит два вида алкалоидов: флавоноиды, включая геспередин и кверцетин, и имеющие терпеновую структуру гинкголиды и билобалиды. Основным механизмом, оправдывающим применение гинкго при ХЗВ, является комплексное воздействие биофлавоноидов.
Для гинкголидов влияние на венозный тонус убедительно не описано, однако воздействие терпеновых алкалоидов на ГАМК-рецепторы головного мозга и их свойство индуцировать систему цитохромов p450 (возможные лекарственные взаимодействия) ограничивают применение препаратов этой группы при лечении патологии вен [21].
Синтетические препараты
Добезилат кальция
В отличие от перечисленных выше растительных средств (за исключением очищенного диосмина), добезилат кальция (2,5 дигидрокси-бензен-сульфонат) имеет точно описанный химический состав (рис. 3). Рис. 3. Добезилат кальция. Механизм действия этого препарата состоит в том, что он, действуя на уровне эндотелия и базальной мембраны капилляров, уменьшает гистамин- и брадикинин-индуцированную проницаемость, а также ингибирует локальную агрегацию тромбоцитов за счет ингибирования фактора агрегации тромбоцитов [22].
К недостаткам длительного применения препарата относится риск развития агранулоцитоза, с которым, несмотря на редкость развития, необходимо считаться [23].
Заключение
Как видно из сказанного выше, все применяемые при ХЗВ препараты обладают плейотропным действием, основными механизмами которого являются норадреналин-опосредованное увеличение сосудистого тонуса, подавление локальной воспалительной реакции в первую очередь за счет торможения адгезии иммунокомпетентных клеток крови к сосудистой стенке и уменьшение локальной свертывающей активности за счет подавления адгезии и агрегации тромбоцитов и активации фибринолитических механизмов эндотелия.
Недостатком большинства лекарств, кроме препаратов диосмина (в том числе диосмина-гесперидина) и добезилата кальция является невозможность точного определения количества действующего вещества, что затрудняет дальнейшее изучение как их фармакокинетических свойств, так и зависимостей «доза—эффект».
Отсутствие данных о четкой зависимости «доза—эффект» диктует возможность применения препаратов в широком дозовом спектре. При этом широкое терапевтическое окно, удовлетворительная переносимость и отсутствие выраженных лекарственных взаимодействий позволяют обходиться без тщательного мониторинга безопасности и терапевтического ответа во время курса лечения.
Необходимо отметить, что имеющиеся фармакотерапевтические опции не могут восстановить нормальную структуру венозной стенки и повлиять на причину заболевания, они предназначены для уменьшения выраженности симптомов болезни: отеков, неприятных ощущений в конечностях, чувства распирания, ночных судорог, боли. Назначение лекарств не исключает применения хирургических методов лечения и ношения компрессионного трикотажа.
Авторы заявляют об отсутствии конфликта интересов.
The authors declare no conflicts of interest.
Сведения об авторах
Талибов О.Б. Фармакология препаратов, применяющихся при хронических заболеваниях вен. Хирургия. Журнал им. Н.И. Пирогова. 2019;2:106-109. https://doi.org/0.17116/hirurgia2019021106
1 Закрепленное в АТХ название группы препаратов.
Флавоноиды глазами фармаколога. Антиоксидантная и противовоспалительная активность
Полный текст
Аннотация
Обзор литературы посвящен рассмотрению механизмов антиоксидантного и противовоспалительного действия флавоноидов. При обсуждении антиоксидантного эффекта подробно рассмотрены механизмы скавенирования реактивных форм кислорода, хелатирования переходных металлов, активации антиоксидантных ферментов. В рассмотрении противовоспалительного действия акцент сделан на воздействии флавоноидов на активность факторов и путей транскрипции, участвующих в формировании воспалительной реакции.
Ключевые слова
Полный текст
Интерес к флавоноидам как к антиоксидантным средствам возник в середине 90-х гг. и в значительной степени был обусловлен появлением такого пищевого феномена, как «французский парадокс», который позднее был распространен и на народы других средиземноморских стран [22]. Целый ряд эпидемиологических исследований показал, что у жителей этих стран, несмотря на потребление жирной пищи, зачастую невысокую физическую активность и распространенность курения, особенности питания прямо коррелируют с относительно невысоким процентом сердечно-сосудистых заболеваний и высокой продолжительностью жизни. Изучение диеты людей, населяющих эти страны, показало наличие в их рационе значительного количества разнообразных флавоноидных соединений, главным образом в овощах, фруктах, винограде и красном вине [29, 34, 50, 51, 70, 74]. В последние годы появились основания говорить об аналогичном «азиатском парадоксе», характерном для народов, населяющих Японию и другие страны Юго-Восточной Азии, который обусловлен потреблением рыбы и морепродуктов, а также ряда пищевых продуктов растительного происхождения, в первую очередь сои [66, 87]. При этом принято считать, что наибольшую роль в многообразном влиянии флавоноидов на организм человека играют их антиоксидантные свойства.
Многочисленные исследования, проведенные в основном in vitro, показывают, что флавоноиды могут быть отнесены к неферментным антиоксидантам, способным прямо или косвенно ослаблять или предупреждать клеточные повреждения, вызываемые свободными радикалами [70]. По предложению авторов цитированной работы, флавоноиды могут осуществлять свой антиоксидантный эффект с помощью следующих механизмов:
Не отвергая всех перечисленных выше возможностей, остановимся, по нашему мнению, на основных.
Способность ряда флавоноидов «гасить» РФК связана с особенностями их химического строения и обусловлена необходимостью либо отдавать атом водорода, либо выступать в качестве доноров электрона. В результате этих реакций происходит нейтрализация биологической активности свободных радикалов. Сами же антиоксиданты, отдав атом водорода или электрон, приобретают радикальные свойства. Правда, образовавшиеся при этом радикальные молекулы значительно более стабильны в сравнении с нейтрализуемыми радикалами, что делает их взаимодействие с субстратом маловероятным [8, 56, 57]. Высказывается и иная точка зрения, согласно которой образующийся промежуточный феноксильный радикал не стабилен, и одной из особенностей этого соединения является способность к делокализации неспаренного электрона, то есть к его перемещению в ароматическое кольцо с образованием ряда резонансных структур. Так что образовавшийся радикал может реагировать с другими свободными радикалами [1]. Не исключено, что это обусловливает возникновение у ряда флавоноидов прооксидантных свойств. Существует мнение, согласно которому большое значение имеет механизм отдачи водорода, поскольку процесс переноса электрона требует привлечения более высокой энергии [59]. При этом способность скавенировать свободные радикалы во многом определяется количеством гидроксильных групп и их расположением в молекуле флавоноида. Учитывая изложенное, отметим, что принятый сегодня консенсус относительно связывания флавоноидами свободных радикалов впервые в виде гипотезы был предложен W. Bors et al. еще в 1990 г. [17] и впоследствии поддержан многими исследователями [20, 52, 54, 69, 70]. Выдвинутая гипотеза включает три основных момента, представленных на рис. 1.
Рис. 1. Основные мишени в молекуле флавоноидов, обеспечивающие связывание свободных радикалов, на примере химической структуры кверцетина (модификация J.B. Bubols et al., 2013)
Из рис. 1 следует следующее.
В экспериментах in vitro установлено, что именно те флавоноиды, которые обладают всеми отмеченными особенностями химической структуры, отличаются наибольшей способностью гасить свободные радикалы. К таким полифенолам относятся флавонолы кверцетин и мирицетин, а также флаван-3-олы эпикатехина галлат, эпигаллокатехин и особенно эпигаллокатехина галлат. При этом значительное участие в усилении антирадикальной активности принимает гидроксильная группа в положении 3, которая придает дополнительную активность флавонолам и флаван-3-олам [8].
В то же время можно считать установленным, что антиоксидантная активность присуща агликонам, но не гликозилированным или конъюгированным дериватам флавоноидов. По-видимому, такое различие обусловлено тем, что в процессе гликозилирования, глюкуронизации, сульфатирования и метилирования происходит замещение гидроксильных групп у ароматических колец, ответственных за взаимодействие со свободными радикалами, что, вероятно, снижает антиоксидантную активность [75].
Большое значение в механизме антиоксидантного действия флавоноидов имеет хелатирование металлов переменной валентности. Флавоноиды легко связывают ионы таких переходных металлов, как железо и медь, которые, инициируя перекисное окисление, способствуют образованию свободных радикалов. По мнению многих исследователей, хелатирование металлов является наиболее эффективным путем подавления процессов перекисного окисления флавоноидами [8].
Хорошо известно, что генерация супероксидного радикала происходит под влиянием металлсодержащих NАD(P)Н-зависимых оксидаз и цитоплазматической ксантиноксидазы, локализованных во многих клетках. При этом кислород может превращаться в супероксидный радикал по уравнению:
О2 + Fe2+ или Cu+ → + Fe3+ или Cu2+
Образовавшийся супероксидный радикал быстро дисмутирует с образованием перекиси водорода H2O2, которая, не будучи свободным радикалом, быстро превращается в самый реактивный из оксирадикалов — гидроксильный радикал HO· в соответствии с известной реакцией Фентона:
Fe2+ или Cu+ + H2O2 → Fe3+ или Cu2+ + OH‾ + HO·
Исходным материалом для этой же реакции служит избыток железа, превышающий количество Fe3+, находящееся в связанном состоянии с трансферрином, протеином, транспортирующим железо [39]. Кроме того, супероксидный радикал обеспечивает высвобождение Fe2+из ферритина и содержащих кластеры железо-сера дегидратаз путем редуцирования Fe3+, а также способен редуцировать железо или медь в реакции:
+ Fe3+ или Cu2+ → O2 + Fe2+ или Cu+,
поставляя редуцированные ионы переходных металлов для реагирования с H2O2 [20, 67].
Индуцируемый ионами переменной валентности оксидативный стресс ведет к массивному повреждению белков, липидов и особенно ядер клеток, где молекулы ДНК координатно связаны с различными переходными металлами. Это вызывает разделение нитей ДНК, повреждение нуклеотидов с последующей злокачественной трансформацией, генные мутации либо апоптоз. При этом наибольшее неблагоприятное воздействие производит инициируемое металлами образование гидроксильного радикала HO· [38, 40, 42, 64, 67, 68, 74].
Исходя из вышеизложенного, связывание переходных металлов, главным образом железа и меди, катализирующих образование свободных радикалов и за счет этого инициирующих оксидативный стресс, представляет собой важную антиоксидантную стратегию. Поэтому способность флавоноидов хелатировать металлы переменной валентности оказывается весьма важной.
Сегодня хорошо известно, что многие флавоноиды способны хелатировать переходные металлы, хотя этот механизм менее изучен, чем прямое скавенирование свободных радикалов. Несмотря на существенные различия в хелатирующей металлы активности, выявлен ряд общих молекулярных аспектов рассматриваемого эффекта [35, 67]. Интересно, что в этих реакциях задействованы те же компоненты химической структуры (главным образом катехольная структура кольца B), что и при скавенировании свободных радикалов (рис. 2).
Рис. 2. Предположительные мишени в молекуле флавоноидов для взаимодействия с металлами переменной валентности (по Procházková D. et al., 2011). М — переходный металл
В качестве доказательства приведенных закономерностей отметим, что при использовании циклической вольтметрии флавоноиды лютеолин и кверцетин, содержащие в молекуле катехольный фрагмент, оказались более мощными ингибиторами реакции Фентона, чем байцилеин и нарингенин, в структуре которых этот фрагмент отсутствует [26]. Ведущая роль в связывании железа катехольной группы у кольца B в сравнении с кольцом А была подтверждена и другими исследователями [14, 19, 43]. Роль гидроксилов в 3-м и 5-м положениях в комплексе с 4-оксогруппой в процессе хелатирования железа также была продемонстрирована в эксперименте [47]. Из изученных флавоноидов наибольшей способностью хелатировать металлы, по-видимому, обладает кверцетин. Это полифенольное соединение, как и его сульфоновые водорастворимые дериваты, оказалось способным образовывать комплексы не только с железом и медью, но и с другими металлами, в том числе с кадмием и хромом, что позволяет считать кверцетин не только антиоксидантом, но и потенциальным антидотом при интоксикации солями соответствующих металлов [27, 49, 70, 80]. Достаточно высокая антиоксидантная активность была обнаружена также при образовании металлокомплексов у рутина, катехина, нарингенина, морина и ряда других флавоноидов [8].
Другим механизмом, обеспечивающим благоприятное воздействие флавоноидов на течение оксидативного стресса, является повышение активности антиоксидантных ферментов, которые, как известно, представляют собой основной фактор защиты от электрофильных токсикантов. В многочисленных экспериментах in vitro показана способность этих растительных полифенолов активировать NАD(P)Н: хинон оксиредуктазу (NQO1), супероксиддисмутазу (SOD), каталазу (KAT), гемоксигеназу-1 (HO-1), а также три связанных с глутатионом фермента: глутатионпероксидазу (GPx), глутатионредуктазу (GR), глутатион-S-трансферазу (GST). Это обеспечивает наличие у флавоноидов непрямого антиоксидантного эффекта [41]. Такое действие было выявлено у представителей всех подклассов флавоноидов [35, 64, 135, 186]. Четкий антиоксидантный эффект в разнообразных клеточных культурах, экспрессирующих такие антиоксидантные ферменты, как GPx, GR, GST, SOD, KAT, был зафиксирован при использовании кверцетина, катехина, мирицетина, лютеолина, нарингенина, апигенина, тангеретина, генистеина, флавоноидов какао [18, 44, 46, 58, 63, 65].
Сегодня доминирует мнение, согласно которому стимуляция флавоноидами активности антиоксидантных ферментов обусловлена главным образом взаимодействием с таким транскрипционным фактором, как Nrf2. Редокс-чувствительная сигнальная система Keap1/Nrf2/ARE контролирует внутриклеточный гомеостаз через экспрессию генов иммунного ответа, апоптоза и клеточного цикла, обеспечивая участие в процессах воспаления, канцерогенеза и защиты от различных стрессовых воздействий, в том числе активных форм кислорода [2–6, 10, 12, 28, 33, 79, 84].
Через вовлечение этого сигнального пути происходит активация экспрессии генов антиоксидантных ферментов за счет взаимодействия транскрипционного фактора Nrf2 с цис-регуляторным антиоксидант-респонсивным элементом (ARE). Цистеиновые остатки, присутствующие в структуре Keap1, по-видимому, функционируют как редокс-сенсоры, а некоторые флавоноиды, возможно, могут химически модифицировать цистеиновые тиолы. Это облегчает диссоциацию Nrf2 от Keap1 и последующую его ядерную транслокацию [31, 41]. Попав в ядро, фактор Nrf2, как установлено, связывается с ARE в промоторном регионе многих генов, в том числе и кодирующих экспрессию антиоксидантных ферментов в некоторых типах клеток и тканей [5, 11, 15, 40, 62, 89]. В экспериментах на нокаутных по Nrf2 мышах была зафиксирована нарушенная индукция детоксицирующих ферментов и редокс-регулирующих протеинов [73].
В то же время нельзя не отметить, что одновременно многие флавоноиды обладают определенной прооксидантной активностью. Не исключено, что эта активность пропорциональна количеству гидроксильных групп в молекулах флавоноидов [23]. Именно наличие гидроксильных групп у ароматических колец, по-видимому, способствует повышенному образованию гидроксильного радикала из перекиси водорода через реакцию Фентона [70]. Кроме того, показано, что ряд флавоноидов способен редуцировать переходные металлы: Fe3+в Fe2+ и Cu2+ в Cu+, что, как известно, обеспечивает поставку редуцированных металлов для последующего взаимодействия с H2O2 [33, 68, 76]. Прооксидантные свойства были выявлены у байкалеина, эпигаллокатехина (EGC), эпигаллокатехина галлата (EGCG), кверцетина, морина, мирицетина, катехина и других флавоноидов [67, 71, 77, 88]. Интересно, что одни и те же флавоноиды могут проявлять как антиоксидантные, так и прооксидантные свойства, что, по-видимому, определяется используемой концентрацией и различными условиями окружающей среды [55, 67, 68, 70, 86, 88].
Как относиться к выявленным прооксидантным свойствам флавоноидов? Этот вопрос остается недостаточно изученным и весьма дискуссионным. При этом высказываемые мнения колеблются от необходимости относиться с осторожностью к использованию больших доз флавоноидов до довольно спокойного отношения к их прооксидантной активности [32, 53, 70]. Нельзя не отметить, что существует точка зрения, согласно которой небольшая степень оксидативного стресса, индуцируемая некоторыми флавоноидами, активирует антиоксидантную защиту организма путем стимулирования экспрессии антиоксидантных ферментов и таким образом усиливает процессы клеточной трансдукции и общей цитопротекции [7, 37, 70].
Противовоспалительное действие флавоноидов
Наряду с антиоксидантным действием противовоспалительная активность многих флавоноидов хорошо известна на протяжении многих лет. Более того, не вызывает сомнений, что отмеченные эффекты зачастую тесно связаны, поскольку имеют ряд общих патофизиологических механизмов [7]. В последние годы опубликован ряд серьезных монографий и статей обзорного характера, посвященных противовоспалительному действию флавоноидов [1, 8]. Поэтому, не углубляясь в детали, отметим лишь ряд существенных моментов, имеющих, на наш взгляд, большое значение, в контексте рассматриваемой проблемы.
NF-κB представляет собой гетеродимерный комплекс белков, которые находятся в цитоплазме и неактивны, будучи связанными со специфическим ингибиторным белком IκB. В условиях активации комплекса происходит фосфорилирование белка IκB с помощью специфических киназ IKK и последующей протеасомной деградации. Высвободившийся активный NF-κB поступает в ядро клетки, где связывается со специфической таргетной последовательностью ДНК, определяя процесс транскрипции контролируемых генов [2, 45, 86]. Сегодня ясно, что фактор NF-κB играет ключевую и многогранную роль в развитии воспалительной реакции. С одной стороны, будучи стимулированным рядом провоспалительных цитокинов, таких как TNF-α, ИЛ-6 и др., NF-κB активирует образование арахидоновой кислоты с последующим увеличением синтеза простагландинов, тромбоксанов, простациклинов и лейкотриенов — активных индукторов воспалительного процесса [8]. Следует подчеркнуть, что эффективность данного каскада обеспечивается активностью таких ферментов, как фосфолипаза А2, циклооксигеназа (ЦОГ) и липоксигеназа (ЛОГ), которые наряду с NF-κB служат многообещающими мишенями для действия флавоноидов. И действительно, показано, что целый ряд флавоноидов ингибирует указанные ферменты, нарушая образование эйкозаноидов и ослабляя тем самым развитие воспалительной реакции [1, 8, 25, 36, 52]. С другой стороны, установлено, что фактор транскрипции NF-κB таргетирует гены химокинов, цитокинов, иммунных рецепторов, молекул клеточной адгезии, инициирующие мощный провоспалительный эффект [81]. Поэтому способность флавоноидов ингибировать транскрипционный фактор NF-κB является одним из многообещающих подходов к объяснению механизма противовоспалительного действия этих растительных полифенолов.
Очевидно, нельзя не отметить и возможную роль в развитии воспаления уже упоминавшейся сигнальной системы Keap1/Nrf2/ARE, контролирующей состояние внутреннего гомеостаза посредством регулирования различных этапов клеточной пролиферации, дифференцировки и апоптоза [3, 9, 61]. Регуляторная роль указанной системы в отношении развития воспалительного процесса четко прослеживается в экспериментах на нокаутных по Nrf2 животных [6]. Не исключено, что противовоспалительное действие различных флавоноидов, в том числе флаванолов, флавонолов, изофлавонов, обусловлено активацией системы Keap/Nrf2/ARE [3, 79].
Подводя итоги обзора, отметим, что сегодня не вызывает сомнений благоприятное влияние пищевых флавоноидов на организм человека, обусловленное их высокой биологической активностью. В последние десятилетия установлено, что рассмотренными выше видами действия биологическая активность флавоноидов отнюдь не исчерпывается. Кроме антиоксидантного и противовоспалительного эффектов известны такие виды активности, как противоопухолевая, противоишемическая, антигипертензивная, противодиабетическая, противомикробная, противовирусная, антитромбогенная, эстрогенная, нейротропная и др. Это косвенно подтверждается огромным количеством эпидемиологических исследований, проведенных в последние годы. В то же время существует много проблем, препятствующих как целенаправленному клиническому применению флавоноидов, так и созданию на их основе индивидуальных высокоэффективных лекарственных препаратов. Первая из них определяется особенностями фармакокинетики флавоноидов. Подавляющее большинство выявленных видов фармакологической активности подтверждено в экспериментах in vitro, а достигнуть их адекватной концентрации в организме ввиду особенностей метаболизма удается далеко не всегда. К существенному же повышению дозировки большинство клиницистов относится с оправданной настороженностью по причине возможных и пока не установленных побочных эффектов. Кроме того, механизмы их фармакологического действия, учитывая современные подходы к требованиям доказательной медицины, нуждаются в дальнейшем углубленном комплексном изучении. И все же нам близок оптимистический взгляд на перспективу клинического применения флавоноидов, что, кроме выявленного многообразия биологической активности, обусловлено относительной дешевизной получения лекарственных препаратов и большой распространенностью этих пищевых полифенолов в окружающей нас, то есть близкой нам, природе.