как определить нормальную форму базы данных

Нормализация баз данных простыми словами

Приветствую всех посетителей сайта Info-Comp.ru! Сегодня мы с Вами поговорим о нормализации базы данных, узнаем, что это такое, какие нормальные формы базы данных существуют и зачем вообще проводить нормализацию базы данных.

как определить нормальную форму базы данных. Смотреть фото как определить нормальную форму базы данных. Смотреть картинку как определить нормальную форму базы данных. Картинка про как определить нормальную форму базы данных. Фото как определить нормальную форму базы данных

Постоянные посетители данного сайта знают, что я здесь публикую достаточно много различных материалов, связанных с языком SQL и системами управления базами данных, однако статей, связанных с теорией баз данных, на текущий момент, к сожалению, нет, поэтому я решил это исправить, и начать цикл статей, посвященных теории баз данных.

Начну я с нормализации баз данных. В этом материале мы поговорим в целом о процессе нормализации, узнаем, зачем проводить нормализацию базы данных, что такое нормальная форма базы данных, а также какие нормальные формы существуют. В следующих материалах я подробно и с примерами расскажу про каждую нормальную форму.

Реляционная база данных

В целом под базой данных можно понимать любой набор информации, которую можно найти в этой базе данных и воспользоваться ей, однако если говорить в контексте SQL, то речь будет идти, конечно, о реляционных базах данных, а что же это такое?

Реляционная база данных – это упорядоченная информация, связанная между собой определёнными отношениями.

Логически такая база данных представлена в виде таблиц, в которых и лежит вся эта информация.

Примечание! Если Вас интересует язык SQL, рекомендую пройти мой онлайн-курс по основам SQL, который ориентирован на изучение SQL как стандарта, таким образом, Вы сможете работать в любой системе управления базами данных. Курс включает много практики: онлайн-тестирование, задания и многое другое.

Нормализация баз данных

В реляционных базах данных есть такое понятия, как «Нормализация».

Нормализация – это процесс удаления избыточных данных.

Также нормализацию можно рассматривать и с позиции проектирования базы данных, в таком случае мы можем сформулировать определение нормализации следующим образом.

Нормализация – это метод проектирования базы данных, который позволяет привести базу данных к минимальной избыточности.

Избыточность устраняется, как правило, за счёт декомпозиции отношений (таблиц), т.е. разбиения одной таблицы на несколько.

Зачем нормализовать базу данных?

У Вас может возникнуть вопрос – а зачем вообще нормализовать базу данных и бороться с этой избыточностью?

Дело в том, что избыточность данных создает предпосылки для появления различных аномалий, снижает производительность, и делает управление данными не гибким и не очень удобным. Отсюда можно сделать вывод, что нормализация нужна для:

Теперь давайте поговорим о самой избыточности данных, что же это такое.

Избыточность данных – это когда одни и те же данные хранятся в базе в нескольких местах, именно это и приводит к аномалиям.

Так как в этом случае необходимо добавлять, изменять или удалять одни и те же данные в нескольких местах. Например, если не выполнить операцию в каком-нибудь одном месте, то возникает ситуация, когда одни данные не соответствуют вроде как точно таким же данным в другом месте.

Давайте рассмотрим пример. Допустим, у нас есть следующая таблица, она хранит информацию о предметах мебели, в частности наименование предмета и материал, из которого изготовлен этот предмет.

Идентификатор предметаНаименование предметаМатериал
1СтулМеталл
2СтолМассив дерева
3КроватьЛДСП
4ШкафМассив дерева
5КомодЛДСП

А теперь допустим, что у нас возникла необходимость подкорректировать название материала, вместо «Массив дерева» нужно написать «Натуральное дерево», и чтобы это сделать нам необходимо внести изменения сразу в несколько строк, так как предметов, изготовленных из массива дерева, несколько, а именно 2: стол и шкаф.

А теперь представьте, что по каким-то причинам мы внесли изменения только в одну строку, в итоге в нашей таблице будет и «Массив дерева», и «Натуральное дерево».

Идентификатор предметаНаименование предметаМатериал
1СтулМеталл
2СтолНатуральное дерево
3КроватьЛДСП
4ШкафМассив дерева
5КомодЛДСП

Какое из этих названий будет правильным? А если представить, что мы можем внести еще какое-то новое значение при добавлении новых записей, например, просто «Дерево».

В этом случае в нашей таблице в скором времени будет и «Массив дерева», и «Натуральное дерево», и просто «Дерево», и вообще, что угодно, ведь это просто текст.

Идентификатор предметаНаименование предметаМатериал
1СтулМеталл
2СтолНатуральное дерево
3КроватьЛДСП
4ШкафМассив дерева
5КомодЛДСП
6ТумбаДерево

Однако по своей сути это один и тот же материал, мы просто решили или подкорректировать его название, или ошиблись при добавлении новой записи. Это и есть аномалия, когда одни данные в одном месте не соответствуют вроде как точно таким же данным в другом месте. Это всего лишь один вид аномалии, однако в процессе добавления, изменения и удаления данных может возникать много других противоречивых ситуаций, т.е. аномалий.

При этом, обязательно стоит отметить, что в нашей таблице всего 5 записей, а теперь представьте, что их миллион!

Именно поэтому мы должны устранять избыточность данных в базе, т.е. проводить так называемую нормализацию базы данных.

В данном конкретном случае мы должны название материала, из которого изготовлены предметы мебели, вынести в отдельную таблицу, а в таблице с предметами сделать всего лишь ссылку на нужный материал, тем самым, соотнеся эту ссылку с исходной записью, мы будем понимать, из какого материала сделан тот или иной предмет.

Идентификатор предметаНаименование предметаИдентификатор материала
1Стул2
2Стол1
3Кровать3
4Шкаф1
5Комод3

Материалы, из которых изготовлены предметы мебели.

Идентификатор материалаМатериал
1Массив дерева
2Металл
3ЛДСП

В этом случае когда нам потребуется изменить название материала, мы будем вносить изменение только в одном месте, т.е. править только одну строку.

Таким образом, представляя материалы в виде отдельной сущности и создавая для нее отдельную таблицу, мы устраняем описанную выше аномалию.

Другими словами, каждая сущность должна храниться отдельно, а в случае необходимости использования этой сущности в другой таблице на нее делается всего лишь ссылка, т.е. выстраивается связь.

Нормальные формы базы данных

В целом процесс нормализации базы данных выглядит следующим образом: мы, следуя определённым правилам и соблюдая определенные требования, проектируем таблицы в базе данных.

При этом все эти правила и требования можно сгруппировать в несколько наборов, и если спроектировать базу данных с соблюдением всех правил и требований, которые включаются в тот или иной набор, то база данных будет находиться в определённом состоянии, т.е. форме, и такая форма называется нормальная форма базы данных.

Иными словами, следуя определённым правилам и соблюдая определенные требования мы приводим базу данных к определенной нормальной форме.

Нормальная форма базы данных – это набор правил и критериев, которым должна отвечать база данных.

Каждая следующая нормальная форма содержит более строгие правила и критерии, тем самым приводя базу данных к определённой нормальной форме мы устраняем определённый набор аномалий.

Отсюда можно сделать вывод, что чем выше нормальная форма, тем меньше аномалий в базе будет.

Процесс нормализации – это последовательный процесс приведения базы данных к эталонному виду, т.е. переход от одной нормальной формы к следующей.

Иными словами, процесс перехода от одной нормальной формы к следующей – это усовершенствование базы данных. Так как если база данных находится в какой-то определённой нормальной форме – это означает, что в базе данных отсутствует определенный вид аномалий.

Существует 5 основных нормальных форм базы данных:

Однако выделяют еще дополнительные нормальные формы:

Если объединить оба этих списка и упорядочить нормальные формы от менее нормализованной до самой нормализованной, т.е. начиная с формы, при которой база данных по своей сути не является нормализованной, и заканчивая самой строгой нормальной формой, то мы получим следующий перечень:

База данных считается нормализованной, если она находится как минимум в третьей нормальной форме (3NF).

В реальном мире нормализация до третьей нормальной формы (3NF) является обычной, стандартной практикой, так как 3NF устраняет достаточное количество аномалий, при этом производительность базы данных, а также удобство ее использования не снижается, что нельзя сказать о всех последующих формах.

Ситуации, при которых требуется нормализовать базу данных до четвертой нормальной формы (4NF), в реальном мире встречаются достаточно редко.

Заметка! Если Вас интересует язык SQL, рекомендую почитать мою книгу «SQL код», которая ориентирована на изучение SQL как стандарта, после прочтения книги Вы сможете писать SQL запросы в любой системе управления базами данных.

Если говорить о всех последующих нормальных формах (5NF, DKNF, 6NF), то в реальной жизни трудно даже представить ситуации, при которых потребуется нормализовать базу данных до этих форм.

Иными словами, 5NF, DKNF, 6NF – это в большей степени теоретические нормальные формы, немного отстраненные от реального мира.

Стоит отметить, что приведение базы данных к какой-то конкретной нормальной форме, обязательно требует, чтобы эта база данных уже находилась в предыдущей нормальной форме. Другими словами, если Вы хотите нормализовать базу данных до третьей нормальной формы, то база уже должна находиться во второй нормальной форме, т.е. нельзя нормализовать базу данных до третьей формы, если она еще не нормализована до второй.

Описание нормальных форм базы данных

В следующих статьях представлено подробное описание каждой нормальной формы и приведены примеры.

На сегодня это все, надеюсь, материал был Вам полезен и интересен, пока!

Источник

Нормализация отношений. Первая и вторая нормальные формы

Предисловие

Нормализация отношений (таблиц) — одна из основополагающих частей теории реляционных баз данных. Нормализация имеет своей целью избавиться от избыточности в отношениях и модифицировать их структуру таким образом, чтобы процесс работы с ними не был обременён различными посторонними сложностями. При игнорировании такого подхода эффективность проектирования стремительно снижается, что вкупе с прочими подобными вольностями может привести к критическим последствиям.

Любому специалисту, по роду своей деятельности так или иначе связанному с проектированием реляционных баз данных, полезно понимать и уметь осуществить нормализацию отношений. И этим постом хотелось бы начать небольшую серию публикаций, посвящённых нормальным формам, имеющую целью дать тем читателям Хабрахабра, которые по различным обстоятельствам ещё не освоили эту тему, возможность легко заполнить этот пробел в знаниях.

Статья не имеет своей целью подробное и точное изложение принципов нормализациии, поскольку это, очевидно, невозможно в рамках блога в силу больших объёмов информации, необходимых для публикации при таком подходе. Кроме этого, для такой цели существует большое количество литературы, написанной прекрасными специалистами. Моя же задача, как я считаю, заключается в том, чтобы популярно продемонстрировать и объяснить основные принципы.

Используемые термины

Атрибут — свойство некоторой сущности. Часто называется полем таблицы.
Домен атрибута — множество допустимых значений, которые может принимать атрибут.
Кортеж — конечное множество взаимосвязанных допустимых значений атрибутов, которые вместе описывают некоторую сущность (строка таблицы).
Отношение — конечное множество кортежей (таблица).
Схема отношения — конечное множество атрибутов, определяющих некоторую сущность. Иными словами, это структура таблицы, состоящей из конкретного набора полей.
Проекция — отношение, полученное из заданного путём удаления и (или) перестановки некоторых атрибутов.
Функциональная зависимость между атрибутами (множествами атрибутов) X и Y означает, что для любого допустимого набора кортежей в данном отношении: если два кортежа совпадают по значению X, то они совпадают по значению Y. Например, если значение атрибута «Название компании» — Canonical Ltd, то значением атрибута «Штаб-квартира» в таком кортеже всегда будет Millbank Tower, London, United Kingdom. Обозначение: -> .

Первая нормальная форма

Отношение находится в первой нормальной форме (сокращённо 1НФ), если все его атрибуты атомарны, то есть если ни один из его атрибутов нельзя разделить на более простые атрибуты, которые соответствуют каким-то другим свойствам описываемой сущности.

Будем называть исходное отношение основным, а значение неатомарного атрибута — подчинённым.

Для того, чтобы нормализовать исходное отношение, атрибуты которого неатомарны, необходимо объединить схемы основного и подчинённого отношений. Кроме того, если, например, таблица, соответствующая ненормализованному отношению уже содержится в БД и заполнена информацией, задача усложняется тем, что значение неатомарного атрибута может в свою очередь содержать несколько кортежей.

Следует пояснить сказанное на примере. Рассмотрим отношение, имеющее атрибуты «Код сотрудника», «ФИО», «Должность», «Проекты». Очевидно, что один сотрудник может работать над несколькими проектами. Предположим, что проект описывается идентификатором, названием и датой сдачи.

Код сотрудникаФИОДолжностьПроекты
1Иванов Иван ИвановичПрограммистID: 123; Название: Система управления паровым котлом; Дата сдачи: 30.09.2011
ID: 231; Название: ПС для контроля и оповещения о превышениях ПДК различных газов в помещении; Дата сдачи: 30.11.2011
ID: 321; Название: Модуль распознавания лиц для защитной системы; Дата сдачи: 01.12.2011

Легко заметить, что не все атрибуты этого отношения атомарны (неделимы). В частности, атрибут «Проекты» можно разделить на три более простых атрибута: «Код проекта», «Название», «Дата сдачи», а значение этого атрибута для сотрудника Иван Иванович Иванов содержит несколько кортежей — информацию о трёх проектах.

Примечание: с некоторой точки зрения атрибут «ФИО» можно также считать неатомарным и в таком случае его также следует разделить на более простые, как «Фамилия», «Имя», «Отчество».

Результат будет выглядеть так:

Код сотрудникаФИОДолжностьКод проектаНазваниеДата сдачи
1Иванов Иван ИвановичПрограммист123Система управления паровым котлом30.09.2011
1Иванов Иван ИвановичПрограммист231ПС для контроля и оповещения о превышениях ПДК различных газов в помещении30.11.2011
1Иванов Иван ИвановичПрограммист321Модуль распознавания лиц для защитной системы01.12.2011

Вторая нормальная форма

Ясно, что отношение, находящееся в 1НФ, также может обладать избыточностью. Для её устранения предназначена вторая нормальная форма. Но прежде чем приступить к её описанию, сначала следует выявить недостатки первой.

Пусть исходное отношение содержит информацию о поставке некоторых товаров и их поставщиках.

Код поставщикаГородСтатус городаКод товараКоличество
1Москва201300
1Москва202400
1Москва203100
2Ярославль104200
3Ставрополь305300
3Ставрополь306400
4Псков157100

Заранее известно, что в этом отношении содержатся следующие функциональные зависимости:
< <Код поставщика, Код товара>-> < Количество>,
<Код поставщика>-> <Город>,
<Код поставщика>-> <Статус>,
<Город>-> <Статус>>

Такое разбиение устранило аномалии, описанные выше: можно добавить информацию о поставщике, который ещё не поставлял товар, удалить информацию о поставке без удаления информации о поставщике, а также легко обновить информацию в случае если поставщик переехал в другой город.

Теперь можно сформулировать определение второй нормальной формы, до которого, скорее всего, читатель уже смог догадаться самостоятельно: отношение находится во второй нормальной форме (сокращённо 2НФ) тогда и только тогда, когда оно находится в первой нормальной форме и каждый его неключевой атрибут неприводимо зависим от первичного ключа.

Источник

Руководство по проектированию реляционных баз данных (10-13 часть из 15) [перевод]

Продолжение.
Предыдущие части: 1-3, 4-6, 7-9

10. Нормализация баз данных

Указания для правильного проектирования реляционных баз данных изложены в реляционной модели данных. Они собраны в 5 групп, которые называются нормальными формами. Первая нормальная форма представляет самый низкий уровень нормализации баз данных. Пятый уровень представляет высший уровень нормализации.

Вот некоторые из основных пунктов, которые связаны с нормализацией баз данных:

Очень малое количество баз данных следуют всем пяти нормальным формам, предоставленным в реляционной модели данных. Обычно базы данных нормализуются до второй или третьей нормальной формы. Четвертая и пятая формы используются редко. Поэтому я ограничусь тем, чтобы рассказать вам лишь о первых трех.

11. Первая нормальная форма (1НФ)

Первая нормальная форма гласит, что таблица базы данных – это представление сущности вашей системы, которую вы создаете. Примеры сущностей: заказы, клиенты, заказ билетов, отель, товар и т.д. Каждая запись в базе данных представляет один экземпляр сущности. Например, в таблице клиентов каждая запись представляет одного клиента.

Первичный ключ.

Правило: каждая таблица имеет первичный ключ, состоящий из наименьшего возможного количества полей.

Как вы знаете, первичный ключ может состоять из нескольких полей. Вы, к примеру, можете выбрать имя и фамилию в качестве первичного ключа (и надеяться, что эта комбинация будет уникальной всегда). Будет намного более хорошим выбором номер соц. Страхования в качестве первичного ключа, т.к. это единственное поле, которое уникальным образом идентифицирует человека.
Еще лучше, когда нет очевидного кандидата на звание первичного ключа, создайте суррогатный первичный ключ в виде числового автоинкрементного поля.

Атомарность.

Правило: поля не имеют дубликатов в каждой записи и каждое поле содержит только одно значение.

Возьмем, например, сайт коллекционеров автомобилей, на котором каждый коллекционер может зарегистрировать его автомобили. Таблица ниже хранит информацию о зарегистрированных автомобилях.

как определить нормальную форму базы данных. Смотреть фото как определить нормальную форму базы данных. Смотреть картинку как определить нормальную форму базы данных. Картинка про как определить нормальную форму базы данных. Фото как определить нормальную форму базы данных
Горизонтальное дублирование данных – плохая практика.

С таким вариантом проектирования вы можете сохранить только пять автомобилей и если у вас их менее 5, то вы тратите впустую свободное место в базе данных на хранение пустых ячеек.
Другим примером плохой практики при проектировании является хранение множественных значений в ячейке.

как определить нормальную форму базы данных. Смотреть фото как определить нормальную форму базы данных. Смотреть картинку как определить нормальную форму базы данных. Картинка про как определить нормальную форму базы данных. Фото как определить нормальную форму базы данных
Множественные значения в одной ячейке.

Верным решением в данном случае будет выделение автомобилей в отдельную таблицу и использование внешнего ключа, который ссылается на эту таблицу.

Порядок записей не должен иметь значение.

Правило: порядок записей таблицы не должен иметь значения.

Вы можете быть склонны использовать порядок записей в таблице клиентов для определения того, какой из клиентов зарегистрировался первым. Для этих целей вам лучше создать поля даты и времени регистрации клиентов. Порядок записей будет неизбежно меняться, когда клиенты будут удаляться, изменяться или добавляться. Вот почему вам никогда не следует полагаться на порядок записей в таблице.

В следующей части рассмотрим вторую нормальную форму (2НФ).

12. Вторая нормальная форма.

Для того, чтобы база данных была нормализована согласно второй нормальной форме, она должна быть нормализована согласно первой нормальной форме. Вторая нормальная форма связана с избыточностью данных.

Избыточность данных.

Правило: поля с не первичным ключом не должны быть зависимы от первичного ключа.

Может звучать немного заумно. А означает это то, что вы должны хранить в таблице только данные, которые напрямую связаны с ней и не имеют отношения к другой сущности. Следование второй нормальной форме – это вопрос нахождения данных, которые часто дублируются в записях таблицы и которые могут принадлежать другой сущности.

как определить нормальную форму базы данных. Смотреть фото как определить нормальную форму базы данных. Смотреть картинку как определить нормальную форму базы данных. Картинка про как определить нормальную форму базы данных. Фото как определить нормальную форму базы данных
Дублирование данных среди записей в поле store.

Таблица выше может принадлежать компании, которая продает автомобили и имеет несколько магазинов в Нидерландах.

Если посмотрите на эту таблицу, то вы увидите множественные примеры дублирования данных среди записей. Поле brand могло бы быть выделено в отдельную таблицу. Также, как и поле type (модель), которое также могло бы быть выделено в отдельную таблицу, которая бы имела связь многие-к-одному с таблицей brand потому, что у бренда могут быть разные модели.

Колонка store содержит наименование магазина, в котором в настоящее время находится машина. Store – это очевидный пример избыточности данных и хороший кандидат для отдельной сущности, которая должна быть связана с таблицей автомобилей связью по внешнему ключу.
Ниже пример того, как бы вы моги смоделировать базу данных для автомобилей, избегая избыточности данных.

как определить нормальную форму базы данных. Смотреть фото как определить нормальную форму базы данных. Смотреть картинку как определить нормальную форму базы данных. Картинка про как определить нормальную форму базы данных. Фото как определить нормальную форму базы данных

В примере выше таблица car имеет внешний ключ – ссылку на таблицы type и store. Столбец brand исчез потому, что на бренд есть неявная ссылка через таблицу type. Когда есть ссылка на type, есть ссылка и на brand, т.к. type принадлежит brand.

Избыточность данных была существенным образом устранена из нашей модели базы данных. Если вы достаточно придирчивы, то вы, возможно, еще не удовлетворены этим решением. А как насчет поля country_of_origin в таблице brand? Пока дубликатов нет потому, что есть только четыре бренда из разных стран. Внимательный разработчик базы данных должен выделить названия стран в отдельную таблицу country.

И даже сейчас вы не должны быть удовлетворены результатом потому, что вы также могли бы выделить поле color в отдельную таблицу.

Насколько строго вы подходите к созданию ваших таблиц – решать вам и зависит от конкретной ситуации. Если вы планируете хранить огромное количество единиц автомобилей в системе и вы хотите иметь возможность производить поиск по цвету (color), то было бы мудрым решением выделить цвета в отдельную таблицу так, чтобы они не дублировались.

Существует другой случай, когда вы можете захотеть выделить цвета в отдельную таблицу. Если вы хотите позволить работникам компании вносить данные о новых автомобилях вы захотите, чтобы они имели возможно выбирать цвет машины из заранее заданного списка. В этом случае вы захотите хранить все возможные цвета в вашей базе данных. Даже если еще нет машин с таким цветом, вы захотите, чтобы эти цвета присутствовали в базе данных, чтобы работники могли их выбирать. Это определенно тот случай, когда вам нужно выделить цвета в отдельную таблицу.

13. Третья нормальная форма.

Третья нормальная форма связана с транзитивными зависимостями. Транзитивные зависимости между полями базы данных существует тогда, когда значения не ключевых полей зависят от значений других не ключевых полей. Чтобы база данных была в третьей нормальной форме, она должна быть во второй нормальной форме.

Транзитивные зависимости.

Правило: не может быть транзитивных зависимостей между полями в таблице.
Таблица клиентов (мои клиенты – игроки немецкой и французской футбольной команды) ниже содержит транзитивные зависимости.

как определить нормальную форму базы данных. Смотреть фото как определить нормальную форму базы данных. Смотреть картинку как определить нормальную форму базы данных. Картинка про как определить нормальную форму базы данных. Фото как определить нормальную форму базы данных

В этой таблице не все поля зависят исключительно от первичного ключа. Существует отдельная связь между полем postal_code и полями города (city) и провинции (province). В Нидерландах оба значение: город и провинция – определяются почтовым кодом, индексом. Таким образом, нет необходимости хранить город и провинцию в клиентской таблице. Если вы знаете почтовый код, то вы уже знаете город и провинцию.

Такая транзитивной зависимости следует избегать, если вы хотите, чтобы ваша модель базы данных была в третьей нормальной форме.

В данном случае устранение транзитивной зависимости из таблицы может быть достигнуто путем удаления полей города и провинции из таблицы и хранение их в отдельной таблице, содержащей почтовый код (первичный ключ), имя провинции и имя города. Получение комбинации почтовый код-город-провинция для целой страны может быть весьма нетривиальным занятием. Вот почему такие таблицы зачастую продаются.

Другим примером для применения третьей нормальной формы может служить (слишком) простой пример таблицы заказов интернет-магазина ниже.

как определить нормальную форму базы данных. Смотреть фото как определить нормальную форму базы данных. Смотреть картинку как определить нормальную форму базы данных. Картинка про как определить нормальную форму базы данных. Фото как определить нормальную форму базы данных

НДС (value added tax) – это процент, который добавляется к цене продукта (19% в данной таблице). Это означает, что значение total_ex_vat может быть вычислено из значения total_inc_vat и vice versa. Вы должны хранить в таблице одно из этих значений, но не оба сразу. Вы должны возложить задачу вычисления total_inc_vat из total_ex_vat или наоборот на программу, которая использует базу данных.

Третья нормальная форма гласит, что вы не должны хранить данные в таблице, которые могут быть получены из других (не ключевых) полей таблицы. Особенно в примере с таблицей клиентов следование третьей нормальной форме требует либо большого объема работы, либо приобретения коммерческой версии данных для такой таблицы.

Третья нормальная форма не всегда используется при проектировании баз данных. Когда разрабатываете базу данных вы всегда должны сравнивать преимущества от более высокой нормальной формы в сравнении с объемом работ, которые требуются для применения третьей нормальной формы и поддержания данных в таком состоянии. В случае с клиентской таблицей лично я бы предпочел не нормализовать таблицу до третьей нормальной формы. В последнем примере с НДС я бы использовал третью нормальную форму. Хранение данных, воспроизводимых из существующих, обычно плохая идея.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *