Уровень парасимпатических влияний на ритм сердца снижен что это значит
ПРОБЛЕМЫ ЭЛЕКТРОКАРДИОЛОГЧЕСКОЙ ОЦЕНКИ ВЛИЯНИЯ ВЕГЕТАТИВНОЙ НЕРВНОЙ СИСТЕМЫ НА СЕРДЦЕ
Ключевые слова вегетативная нервная система, вариабельность сердечного ритма, реполяризация желудочков, электрокардиография |
autonomic nervous system, heart rate variability, ventricular repolarization, electrocardiography
Аннотация Рассматривается корреляция показателей вариабельности сердечного ритма и «симпатико-парасимпатического» балланса, роль ряда электрокардиологических критериев как маркеров неоднородности реполяризации желудочков. | Annotation The correlation of the heart rate variability indices with «sympatico-parasympathetic» balance, the role of a number of electrocardiological criteria as markers of inhomogeneity of ventricular repolarization are considered. |
Автор Рутткай-Недецки, И. | Номера и рубрики ВА-N22 от 28/06/2001, стр. 56-60 /.. Оригинальные исследования Широко известно, что вегетативная нервная система (ВНС) играет важную роль в патогенезе заболеваний сердца, вместе с тем возможности и преимущества электрокардиологии в плане оценки этой роли все еще остаются спорным предметом. Структурная и функциональная гетерогенность вегетативной иннервации сердца В отличие от парасимпатической иннервации, симпатические волокна распределены в изобилии во всех отделах сердца в виде терминальной сетевидной структуры, которая оплетает мышечные клетки, тесно прилегая к ним, но не проникает внутрь клетки [2]. Эффект симпатического медиатора норадреналина, также как и адреналина, высвобождающегося в кровоток из мозгового вещества надпочечников, заключается в укорочении потенциала действия, и, следовательно, изменении формы фазы 2 и 3 потенциала действия (плато и конечная реполяризация). Более быстрое восстановление потенциала является предпосылкой необходимой реактивности кардиомиоцита при увеличении частоты сокращений. Катехоламины увеличивают также медленный ток кальция внутрь клетки, действуя таким путем на механическую работу и электрические свойства клетки [1]. Интересные различия между эффектами стимуляции симпатического нерва и введения адреналина или норадреналина были отмечены на препаратах открытого сердца собаки [5]. Во время звездчатой стимуляции рефрактерный период желудочков, зарегистрированный с помощью эпикардиальных электродов, укорачивался, но его временная дисперсия возрастала. В противоположность этому эффекту, инфузия норадреналина и адреналина уменьшала дисперсию. Было высказано предположение, что волокна миокарда, непосредственно прилежащие к окончаниям эффекторных нервов, подвергаются действию относительно больших концентраций медиатора, так что различие между эффектом стимуляции нерва и внутривенной инфузией адренергических медиаторов может быть обусловлено различиями в распространении активных агентов. Кажущаяся противоречивость результатов вышеперечисленных экспериментальных исследований [4, 5] могла бы быть объяснена гипотезой о том, что стимуляция симпатического нерва уменьшает пространственную неоднородность, но увеличивает временную дисперсию рефрактерных периодов миоцитов желудочков. Структурная и функциональная гетерогенность вегетативной иннервации сердца, также как и ее сложный иерархический контроль, позволяет с трудом представить, что концепция «симпатико-парасимпатического баланса» имеет физиологические основы, если рассматривать сердце как единое целое. Вариабельность сердечного ритма и «симпатико-парасимпатический баланс» Поскольку симпатический и парасимпатический отделы ВНС могут функционировать или независимо, или как антагонисты, или как синергисты, длительность интервала R-R не содержит какой-либо информации об уровне парасимпатического или симпатического влияния на водитель ритма. Некоторая величина этого показателя может быть результатом различных комбинаций парасимпатических и симпатических входов, невозможно установить, связано ли это только с подавлением вагусной активности или является результатом смешанного симпатического и парасимпатического влияния, или обусловлено симпатическим воздействием на водитель ритма. Сначала полагали, что подсчет спектральных мощностей интервала R-R путем расчета соотношения между мощностями низкочастотного (около 0.1 Гц) и высокочастотного (>0.15 Гц) спектров может пролить свет на эту проблему. Предполагали, что низкочастотное колебание длительности интервала R-R происходит от колебаний мышечной симпатической активности, изменяя артериальное давление (АД) и ЧСС путем ритмического высвобождения норадреналина [6, 7]. Высокочастотный спектр колебания длительности интервала R-R представлялся опосредованным колебаниями парасимпатической активности, связанными с дыханием. Однако, аналитический обзор физиологических основ теории симпатико-парасимпатического равновесия, предложенной Экбергом [8], показал, что эта конструкция приписывает физиологическим регуляторным механизмам такие свойства, которыми эти механизмы не обладают. Так, например, не обнаружено значимой корреляции между выбросом норадреналина и спектральной мощностью интервала R-R при частоте 0.1 Гц [9], а атропин в большой дозе ликвидировал практически всю спектральную мощность интервалов R-R в низкочастотном и высокочастотном диапазонах [10, 11]. Таким образом не существует доказательства того, что исходная мощность низкочастотного спектра интервалов R-R количественно связана с активностью симпатического сердечного нерва. Исходно связанные с частотой дыхания колебания интервала R-R значимо, но недостаточно, связаны с уровнем активности сердечной ветви блуждающего нерва. Эти изменения, связанные с выраженными колебаниями частоты и глубины дыхания, могут быть объяснены на основе кинетики ответа синоатриального узла на введение ацетилхолина: во время медленного дыхания они выражены более полно, чем при быстром дыхании [12]. Как подчеркнуто Экбергом [8], обоснование теории симпатико-парасимпатического баланса отчасти имеет философские основы; нет никаких обязательных физиологических предпосылок того, что уровни колебаний активности симпатического и блуждающего нервов должны находиться в состоянии баланса. Эта критика не должна отвергать возможную пользу расчета соотношения LF/HF для характеристики некого состояния регуляции сердечно-сосудистой системы без связи с «симпатико-парасимпатическим балансом». Для адекватного понимания участия ВНС в многоуровневых механизмах контроля, необходимо осознать, что их исследования должны быть физиологически осмысленными. Электрокардиологические параметры неоднородности реполяризации желудочков как показателя влияния вегетативной нервной системы В противоположность деполяризации, реполяризация сердца не может быть описана с точки зрения распространения фронта волны, так как в этот период центры источников и каналов мембранных токов в миокарде желудочков расположены на большом расстоянии. Их пространственное и временное распределение определяется межклеточными различиями в кинетике мембранных каналов и изменениями состава межклеточного пространства, включая действие симпатических медиаторов. В результате, сегмент ST и зубец Т находятся под влиянием одних и тех же факторов. Авторитетный обзор этой проблемы опубликован Суравичем [13]. Нижеприведенные рассуждения будут касаться некоторых редко используемых, но по-видимому перспективных показателей реполяризации желудочков. Обсуждаемые в настоящее время вопросы, например, QT-дисперсия или альтернации зубца Т, не будут рассматриваться. Зубец Т представляет собой неисчезнувшие различия потенциалов при реполяризации желудочков. Было подсчитано, что зубец Т отражает 7-8% общего объема реполяризации, а остальное взаимно аннулируется ввиду противоположного направления волн реполяризации, так что малые локальные изменения процесса реполяризации могут оказывать драматическое влияние на форму зубца Т [14]. Ранние исследования показали изменения зубца Т при гипнотическом внушении беспокойства [15], страха предстоящего хирургического вмешательства [16], во время устного счета [17], при введении адреналина [18] и допамина [19]. Следует отметить, что при эмоциональном стрессе изменения зубца Т наблюдаются только у 40-63% людей. Амплитуда зубца Т как мера симпатических влияний на миокард была представлена и в физиологических исследованиях [20, 21]. Так как количественная обработка изменений зубца Т, неодинаковых в разных отведениях ЭКГ, сложна, в качестве удобного параметра был предложен пространственный максимальный вектор Т (sT max), регистрируемый в системе физически корригированных ортогональных отведений [22, 23]. В этом исследовании, проведенном у 21 здорового лица, 42 больных с гипертрофией желудочков и 24 пациентов с ишемической болезнью сердца 92% пациентов всей выборки реагировали на ментальный стресс (устный счет) уменьшением интервала R-R, и лишь у 65% кроме того изменялся sTmax. Изменение sT max выражалось в его уменьшении у всех здоровых лиц. Увеличение наблюдалось, как правило, лишь в группах с сердечной патологией. В подгруппе нормальных лиц с изменяющимся sTmax при стрессе, уменьшение sTmax положительно коррелировало как со степенью укорочения R-R, так и с исходным значением sTmax (p Угол между векторами QRS и Т Одним из последствий различия в распространении фронта активации и восстановления желудочков является различие в ориентации векторов QRS и Т. Нормальные значения пространственного угла между «полуплощадью» QRS и максимальным вектором Т при использовании системы отведений SVEC III у 50 здоровых лиц были приведены в работе Болла и Пипбергера (в среднем 56°, стандартное отклонение 18.8, разброс значений 20-105) [27]. Полученные нами значения пространственного угла между интегральными векторами QRS и STT в отведениях системы Франка у 135 здоровых лиц были отчетливо близкими: в среднем 57.5°, стандартное отклонение 29.9, разброс значений 4-143. Известно, что этот угол увеличивается при гипертрофии желудочков и связан с соотношением величины желудочкового градиента и QRS [28]. Было обнаружено, что он также увеличивается в ортостазе, после мышечной нагрузки, и после введения адреналина [29]. Интересной особенностью является увеличение этого угла при глубоком вдохе [30,31,24], что не может быть объяснено только изменением положения сердца. Этот акт (глубокий вдох) приводит к некоторому напряжению систем сердечно-сосудистой регуляции с важным участием ВНС. Недавние исследования пространственного угла между интегральными векторами QRS и STT в системе отведений Франка показали его увеличение с возрастанием возраста пациентов и при задержанном глубоком вдохе (в среднем на 15°, p Сумма абсолютных величин максимума и минимума поверхностного интегрального QRST Информацию о свойствах реполяризации желудочков ищут, часто с помощью сложных подходов, путем анализа изоинтегральных контурных карт, полученных путем интегрирования комплексов QRS в каждом отведении на протяжении всего интервала QRST (BSIM) [34, 35]. Были получены некоторые свидетельства того, что и простое измерение амплитуды пик-основание поверхностного интеграла QRST BSIM (AmplBSIM) может использоваться для определения нарушений реполяризации [36, 37]. Следует отметить, что величины экстремумов BSIM тесно связаны с числом используемых электродов; при увеличении числа точек регистрации возрастает возможность попасть в истинный пик распределения. Таким образом, должна соблюдаться осторожность при сравнении результатов, полученных с использованием разного числа электродов. Данные по статистике индивидуально определенной AmplBSIM отсутствуют и не могут быть полностью компенсированы данными статистики экстремумов, так как не существует простой связи между индивидуальной вариабельностью AmplBSIM и экстремумами. В проведенном нами исследовании на 135 здоровых лицах [38] AmplBSIM уменьшалась с возрастом (r=-0.273, p Корреляция между sTmax, углом QRS-STT и AmplBSIM 1. Структурная и функциональная гетерогенность регуляции сердечной деятельности со стороны ВНС не позволяет охарактеризовать это состояние как «симпатико-парасимпатический» баланс. 2. Вариабельность сердечного ритма и электрокардиологический анализ паттерна реполяризации желудочков способны отразить более физиологически значимую информацию. 3. По-видимому, известные электрокардиологические показатели восстановления потенциала желудочков отражают до некоторой степени разные стороны этого процесса. 1. Katz AM: Physiology of the Heart. Raven Press, New York, 1977, p. 450. 2. Braunwald E, Sonnenblick EH, Ross J. In: Braunwald E, ed: Heart Disease. Saunders, Philadelphia, 1980, 351-392. 3. Lewy MN: Neural control of the heart. J Cardiovasc Electrophysiol 1995; 6:283-293. 4. Takei M, Sasaki Y, Yonezawa T et al. The autonomic control of the transmural dispersion of ventricular repolarization in anesthetized dogs. J Cardiovasc Electrophysiol 1999;10:981-989. 5. Han J, de Jalon PG, Moe GK: Adrenergic effects on ventricular vulnerability. Circulation Res 1964; 14:516-524. 6. Eckberg DL, Nerhed C, Wallin BG: Respiratory modulation of muscle sympathetic and vagal cardiac outflows in man. J Physiol (Lond.) 1985; 365:181-196. 7. Wallin BG, Nerhed C: Relatioship between spontaneous variations of muscle sympathetic nerve activity and succeeding changes of blood pressure in man. J Auton Nerve Syst 1982; 6:293-302. 8. Eckberg DL: Sympathovagal balance. A critical appraisal. Circulation 1997; 96:3224-3232. 9. Kingwell BA, Thompson JM, Kaye DM et al.: Heart rate spectral analysis, cardiac norepinephrine spillover, and muscle sympathetic nerve activity during human sympathetic nervous activation and failure. Circulation 1994; 90:234-240. 10. Pomeranz B, Mackaulay RJB, Caudill MA et al.: Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol 1985; 248:H151-H153. 11. Koh J, Brown TE, Beightol LA, Ha CY, Eckberg DL: Human autonomic rhythms: vagal cardiac mechanisms in tetraplegic subjects. J Physiol (Lond) 1994; 474:483-495. 12. Saul JP, Berger RD, Albrecht P et al.: Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Physiol 1991; 261:H1231-H1245. 13. Surawicz B: St-T abnormalities. In Macfarlane PW, Veitch Lawrie TD, eds: Comprehensive Electrocardiology, Volume 1. Pergamon Press, New York, 1989, 511-563. 14. Burgess MJ, Millar K, Abildskov JA: Cancellation of electrocardiographic effects during ventricular recovery. J Electrocardiol 1969; 2:101-107. 15. Berman R, Simonson E, Heron W: Electrocardiographic effects associated with hypnotic suggestion in normal and coronary sclerotic individuals. J Appl Physiol 1954; 7:89-92. 16. Mainzer F: L’influence de l’anxiete sur l’electrocardiogramme: Son importance dans l’electrocardiographie pratique. Cardiologie 1958; 32:362-374. 17. Blohmke M, Schaefer H, Stelzer O et al.: Vegetative Tonisierung des Herzens wahrend geistiger Belastung, gemessen am EKG. Int Z angew Physiol einschl Arbeitsphysiol 1967; 24:182-193. 18. Mitchell JH, Shapiro AP: The relationship of adrenalin and T wave changes in the anxiety state. Am Heart J 1954; 48:323-330. 19. Kellerova E, Vigas M, Kvetnansky R, Jezova D: The influence of dopamine on the maximal spatial repolarization vector of the human heart. In: Ruttkay-Nedecky I, Macfarlane PW, eds: Electrocardiology’83, Elsevier, Amsterdam, 1984, 78-83. 20. Matyas TA, King MG: T-wave amplitude stability during sinus arrhythmia in resting man. Physiology and Behaviour 1976; 16:115-117. 21. Furedy JJ, Helsegrave RJ, Scher H: Psychophysiological and physiological aspects of T-wave amplitude in the objective study of behavior. Pav J Biol Sci 1984;19:182-194. 22. Ruttkay-Nedecky I: Effect of emotional stress (mental arithmetics) on amplitudes of P and T waves of the orthogonal electrocardiogram. Bratisl lek listy 1978; 69:638-646 (in Slovak with summary in English). 23. Ruttkay-Nedecky I: Effect of emotional stress on cardiac repolarization vectors. Adv Cardiol 1978; 21:284-285. 24. Ruttkay-Nedecky I, Regecova V: Quantitative description of the cardiac electric field in held deep inspiration. In Liebman J ed: Electrocardiology’96, World Scientific, Singapore etc. 1997, 123-126. 25. Regecova V: Comparative study of the influence of somatometric variables on vectorcardiographic and body surface mapping characteristics. In: Bacharova L, Macfarlane PW eds: Electrocardiology ’97, World Scientific, Singapore, etc., 1998,182-185. 26. Ruttkay-Nedecky I, Andrasyova D, Regecova V: Noninvasive electrocardiologic indicators of ventricular sympathetic drive. Cardiology, in press. 27. Ball MF, Pipberger H: The normal spatial QRS-T angle of the orthogonal vectorcardiogram. Am Heart J 1958; 56:611-615. 28. Mashima S: Theoretical considerations on the electrocardiogram of ventricular hypertrophy. J Electrocardiol 1976; 9:133-138. 29. Jedlicka J: Verkuzung des Ventrikelgradienten in Hyperkinetischen Zustanden. In: Kowarzyk H ed: Probleme der Raumlichen Vektorkardiographie, Publ.House of the Slovak Academy of Sci, Bratislava, 1963, 137-142. 30. Simonson E, Nakagawa K, Schmitt O: Respiratory changes of the spatial vectorcardiogram recorded with different lead systems. Am Heart J 1957; 54:919-939. 31. Ruttkay-Nedecky I: Effects of respiration and heart position on the cardiac electric field. In Nelson CV, Geselowitz DB eds: The Theoretical Basis of Electrocardiology, Clarendon Press, Oxford 1976, 120-134. 32. Andrasyova D, Cizmarova E, Ruttkay-Nedecky I: Factors affecting the spatial angle between integral QRS and T vectors. In Bacharova L, Macfarlane PW eds: Electrocardiology’97, World Scientific, Singapore etc.1998, 279-282. 33. Andrasyova D, Regecova V, Cizmarova E, Ruttkay-Nedecky I: Vectorcardiographic indication of adrenergic tonus in the working myocardium. In Preda I ed: Electrocardiology’98, World Scientific, Singapore etc. 1999, 431-434. 34. Abildskov JA, Evans AK, Lux RL, Burgess MJ: Ventricular recovery properties and QRST deflection area in cardiac electrocardiograms. Am J Physiol 1981; 239:H227-H231. 35. De Ambroggi L: Body surface potential mapping as a tool for detecting arrhythmia vulnerability. In Liebman J ed: Electrocardiology’96. World Scientific, Singapore etc, 1997, 489-495. 36. Stanley ML, Grogin HR, Chin MC et al.: Body surface mapping detects regional sympathetic imbalance in canine ventricular myocardium (abst). J Am Coll Cardiol 1993; 21:53A. 37. Goldner BG, Horwitz L, Quan W et al.: Evaluation of vasovagal syncope with body surface mapping during head-up tilt-table testing. Am J Cardiol 1994; 74:1176-1179. 38. Ruttkay-Nedecky I, Regecova V: Normal variability of the gradient between maximum and minimum of the QRS area distribution. In Preda I ed: Electrocardiology’98. World Scientific, Singapore etc. 1999, 35-38. Научная электронная библиотекаПрекина В И, Самолькина О Г, 1.1. Вариабельность ритма сердцаДля оценки риска развития неблагоприятных сердечных событий широко используется анализ вариабельности ритма сердца (ВРС), которая представляет собой временные колебания интервалов между последовательными ударами сердца (интервалов RR) и рассматривается как маркер активности вегетативной нервной системы (ВНС) [206]. ВРС – количественное выражение, мера синусовой аритмии. В последние годы возрос интерес к изучению ВРС как показателя, отражающего автономную регуляцию сердца и определяющего риск внезапной сердечной смерти [100, 226, 228]. В настоящее время ВРС признана наиболее информативным и доступным методом оценки вегетативной регуляции сердечного ритма и является неотъемлемой частью обследования кардиологических больных [227]. Несмотря на большое количество исследований, свидетельствующих о взаимосвязи симпатики, парасимпатики, барорефлекса, системы терморегуляции, гуморальных влияний с определенными временными и спектральными показателями ВРС, к настоящему времени накоплен большой фактический материал, не позволяющий однозначно рассматривать ВРС как метод оценки вагосимпатического баланса. Так, эксперты клиники Мэйо (США), проанализировав работы за 20-летний период в области ВРС, отметили, что, учитывая множественный характер эндо- и экзогенных факторов, влияющих на формирование структуры ритма сердца, параметры ВРС не отражают истинное состояние ВНС у больных с кардиоваскулярной патологией. Основной целью исследования ВРС при суточном мониторировании ЭКГ (на длительных промежутках времени) является оценка функционального состояния пациента. Функциональное состояние пациента – это способность и готовность организма выполнять различные функции (по И.К. Анохину, 1975) [5], в частности – поддержание его гомеостаза и интеллектуального состояния [11]. Общей мерой для всех этих функций можно считать энергию, затраченную на их выполнение. Живой организм при взаимодействии с внешней средой стремится достигнуть полезного результата с наименьшими энергетическими затратами. Одним из показателей нормального функционирования систем является нормальная ВРС. Высокая ЧСС, снижение ВРС и синусовой аритмии являются неблагоприятными факторами при оценке функционального состояния пациента [4, 123, 224]. Преобладание симпатической активности характерно для состояния стресса и неблагоприятно сказывается на деятельности сердечно-сосудистой системы, приводит к развитию тахикардии, сердечных аритмий, ишемии миокарда, гипертонических кризов [28, 113, 222, 223]. У пациентов с АГ и цереброваскулярными заболеваниями имеются изменения ВРС с преобладанием активности симпатической нервной системы [108]. Снижение ВРС связано с возрастом [21, 87]. Инсульт приводит не только к повышению уровня катехоламинов плазмы, но и изменениям автономной регуляции сердечно-сосудистой системы, нарушению ВРС, что может негативно влиять на электрическую нестабильность миокарда, провоцировать аритмии, которые могут ухудшать гемодинамику и негативно влиять на репаративные процессы в зоне церебральной ишемии [36, 145, 184]. При развитии ишемического инсульта отмечалась положительная корреляция между частотными показателями ВРС и уровнями систолического и диастолического АД в дневные и ночные часы, что свидетельствует о едином механизме, участвующем в регуляции работы сердечно-сосудистой системы, и его нарушении у больных в остром периоде ИИ [24]. Дисфункция вегетативной регуляции сердечно-сосудистой системы влияет на выживаемость после инсульта [193, 264]. В острейшем периоде ИИ происходит угнетение вегетативной регуляции сердца со снижением всех параметров ВРС и циркадного При инсульте наблюдалось большее, чем у пациентов с гипертоническим кризом, снижение временных показателей ВРС и ЦИ [23, 128]. Отмечено снижение ВРС у больных с АГ в острейшем периоде ИИ [23]. К концу острого периода увеличивается выраженность вегетативного дефицита у больных ХСН, что обусловлено диффузными изменениями сердечной мышцы, приводящими к перестройке внутрисердечного вегетативного аппарата [115]. При наличии выраженного неврологического дефицита по окончании раннего восстановительного периода инсульта у больных хронической сердечной недостаточностью I-II ФК в динамике, по сравнению с острым периодом (7–10-й день болезни), выявлено статистически значимое снижение ВРС, нарастание активности симпатико-адреналовой системы. Регресс неврологической симптоматики в раннем восстановительном периоде ишемического МИ сопровождается уменьшением вегетативной дисфункции по данным ВРС [51]. Лакунарный инсульт в остром периоде сопровождается изменениями ВРС [37]. Сниженная парасимпатическая активность коррелирует с неблагоприятным ранним прогнозом у лиц с атеротромботическим В остром периоде инсульта происходит снижение ВРС, обусловленное поражением определенных мозговых структур [210, 211]. К концу острого периода максимальный дефицит вегетативных влияний на ритм сердца сохраняется у больных с инсультом в вертебрально-базилярной системе и при большом очаговом поражении [114]. Проспективное наблюдение на протяжении 1 года состояния вегетативного статуса у больных после инсульта в вертебрально-базилярном бассейне указывает на значительную стойкость выявленных нарушений ВРС [133]. Cнижение ВРС более выраженно при правосторонней локализации церебрального поражения. При этом самые низкие значения ВРС регистрировались при вовлечении в патологический очаг правого островка [265]. При правосторонней локализации инсульта независимо от поражения островковой доли имеется стойкий дефицит вегетативной регуляции, в большей степени за счет парасимпатической составляющей, что может быть связано с более неблагоприятным прогнозом [115]. В острейшем периоде ИИ у больных с преимущественным поражением каротидного бассейна с образованием больших и средних по размеру очагов отмечается стойкое нарушение сердечно-сосудистой автономной регуляции. Выявлены взаимосвязи церебральной и центральной гемодинамики в остром периоде вертебробазилярного инсульта ишемического генеза, выражающиеся в снижении мозгового кровотока не только в бассейне позвоночных артерий, но и в целом, при одновременном увеличении показателей насосной функции сердца в первые сутки мозговой катастрофы и с последующим её снижением к концу 3-й недели; при этом падение сердечного индекса менее 1,8 являлось прогностически неблагоприятным [42]. К концу острого периода инсульта увеличивается выраженность вегетативного дефицита у больных с хронической сердечной недостаточностью (ХСН), что обусловлено диффузными изменениями сердечной мышцы, приводящими к перестройке внутрисердечного вегетативного аппарата [116]. Регресс неврологической симптоматики в раннем восстановительном периоде ИИ сопровождается уменьшением вегетативной дисфункции по данным ВРС [51]. ЦИ ЧСС характеризует изменчивость ритма в течение суток и является важной характеристикой патологического процесса. Циркадные колебания частоты кардиальных кризов тесно связаны с биоритмами изменений электрофизиологических свойств в миокарде [187]. В первые сутки ИИ отмечается существенное снижение ЦИ, сохраняющееся на протяжении последующих трех недель. При локализации очага в вертебро-базилярной системе снижение ЦИ носит стойкий характер и свидетельствует о стабильности нарушений функциональных резервов сердечно-сосудистой системы, поражение в каротидной системе сопровождается адекватной реакцией ЦИ в процессе восстановления [145]. У больных с различным течением инсульта встречаются разные варианты изменений вегетативной регуляции и неодинаковая степень их выраженности, что позволяет использовать оценку изменений обоих отделов ВНС для прогнозирования тяжести и исхода заболевания [173, 181, 183, 212]. Наиболее информативные критерии ВРС, которые с вероятностью 70–82 % ассоциируются с высоким риском летального исхода при инсульте: SDNN 1,45 (Макаров Л.М., 2011). Незначительное отклонение циркадного профиля от нормы (пограничное значение) считали при значении ЦИ в пределах 1,2–1,23. Кроме временных показателей ВРС использовали метод «анализа коротких участков» [110]. Интегральное заключение по ВРС проводилось по доле участков с малой вариабельностью: если больше 60 %, то «Резко снижена», от 30 до 60 % – «Умеренно снижена», меньше С помощью исследования ВРС можно получить новые дифференциально-диагностические критерии дисфункции сердечно-сосудистой системы, в том числе и в результате сосудистого церебрального поражения. ВРС представляет собой объективный и чувствительный индикатор церебральной функции при инсульте. В табл. 1.1.1 представлена сравнительная характеристика ЧСС, показателей ВРС и ЦИ пациентов, включенных в исследование. Средняя ЧСС в исследуемых группах была примерно одинаковой. Максимальное снижение SDNN отмечено у пациентов ОГ: на 11,36 % (P ОГ ( n = 108)
|