Уровень вакуума в чем измеряется
Единицы измерения давления вакуума
Понятие вакуума
В ЗАВИСИМОСТИ ОТ ДАВЛЕНИЯ
ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРЫ КИПЕНИЯ ВОДЫ
Цель работы: экспериментальное определение зависимости температуры кипения от давления ниже атмосферного, изучение «диаграммы p-v воды и водяного пара», знакомство с понятием вакуума.
Под вакуумом в технике понимают состояние газа, при котором его давление ниже атмосферного.
Величина вакуума в каком-либо сосуде определяется как разность между атмосферным и абсолютным давлением газа в этом сосуде.
В практике для оценки степени разрежения газов в сосуде пользуются величиной абсолютного давления, а словом «вакуум» характеризуют лишь состояние разрежения газов. Согласно основного уравнения гидростатики абсолютное давление вакуума равно:
Единицей давления в международной системе единиц СИ служит Ньютон на квадратный метр (Н/м 2 ), который назван Паскалем (Па)
В технике до настоящего времени имеют распространение внесистемные единицы давления:
1 ат = 1 кгс/ кв. см = 9,81*10 4 Па- техническая атмосфера;
1 ат = 10 мм вод. ст. =735,559 мм рт. ст.
Различают следующие состояния вакуума:
Для создания требуемой степени разрежения в экспериментальных и промышленных установках применяют вакуумные насосы, которые по назначению подразделяются на:
Вакуумные насосы по принципу действия различают на:
турбомолекулярные и специальные.
Приборы, измеряющие атмосферное давление называются барометрами,а измеряющие давление выше атмосферного – манометрами. Приборы для измерения давления газа ниже атмосферного называются вакуумметрами. По принципу действия вакуумметры делятся на приборы прямого и косвенного действия. Приборы прямого действия непосредственно реагируют на давление газа. К ним относятся:
1) жидкостные (ртутные, спиртовые) U-образные вакуумметры;
2) деформационные (механические) вакуумметры с датчиком сильфоном, мембраной или пружиной;
3) компрессионные вакуумметры, действие которых основано на законе изотермического сжатия идеального газа.
Приборы косвенного действия измеряют не само давление, а некоторую его функцию и состоят из датчика и измерительного блока. К ним относятся:
1) теплоэлектрические вакуумметры, использующие зависимость теплопроводности газа от давления. Они подразделяются на термопарные и вакуумметры сопротивления;
2) ионизационные вакуумметры, в которых используется ионизация газа. Они подразделяются на электрорязрядные, радиоизотопные и электронные ионизационные.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Что такое вакуум и где мы его используем
Анна Веселко
В самом строгом смысле вакуум — это область пространства, в которой полностью отсутствует материя. Этот термин представляет собой абсолютную пустоту, и главная его проблема заключается в том, что он описывает идеальное состояние, которое не может существовать в реальном мире. Еще никто не нашел способа создать идеальный вакуум такого типа в земных условиях, и по этой причине термин также используется для описания пустых областей космоса. Но вакуум все же есть и в областях, находящихся чуть ближе к нашей повседневной жизни. Рассказываем, что это такое, простыми словами.
Ни один вакуум, производимый на Земле, даже близко не подходит к этому условию
Поскольку удалить все молекулы воздуха из контейнера практически невозможно, невозможно добиться и идеального вакуума
В промышленных и домашних масштабах (например, если вы решили убрать в вакуумные пакеты зимний пуховик) эффект достигается за счет вакуумных насосов или генераторов разных размеров, которые и удаляют воздух. Насос, состоящий из поршня в цилиндре, прикреплен к закрытой емкости, и с каждым ходом насоса часть газа из баллона удаляется. Чем дольше работает насос, тем лучше создается разрежение в емкости.
Уровень вакуума можно измерить несколькими типами манометров:
Манометр с трубкой Бурдона является компактным и наиболее широко используемым устройством — измерение основано на деформации изогнутой эластичной трубки при приложении вакуума к отверстию манометра.
Манометр с трубкой показывает разницу между двумя давлениями. В простейшем виде этот манометр представляет собой прозрачную U-образную трубку, наполовину заполненную ртутью. Когда оба конца трубки находятся под атмосферным давлением, уровень ртути в каждом колене одинаков. Приложение вакуума к одной стороне заставляет ртуть в ней подниматься и опускаться с другой стороны — разница в высоте между двумя уровнями и показывает уровень вакуума.
Вакуум: основные понятия, определения и типы вакуума
Вакуум понятие относительное. Учеными доказано, что абсолютного вакуума не существует. Есть несколько понятий вакуума и его интерпретаций.
Что такое вакуум
Ва́куум с латинского «vacuum» обозначает пустой, т.е. это пустое пространство. Но создать пустое пространство невозможно. Поэтому принято считать вакуумом объем, в котором почти нет никаких веществ. Количество молекул в вакууме находится в таком небольшом количестве, что может достигать нескольких десятков.
Из-за малого количество молекул, их внутренняя энергия или импульсы стремятся к нулю. Поэтому считается, что в вакууме практически отсутствуют различные процессы, такие как электрический ток, трение и прочее.
В физике ва́куум – это пространство с газом, давление которого ниже атмосферного давления. Другими словами, это разряжение.
Качество вакуума или его глубина измеряется давлением. А точнее, отношением длины свободного пробега частицы к линейным размерам емкости, в которой он создан. С увеличением степени разряжения уменьшается число столкновений молекул в пространстве. Длина свободного пробега частиц увеличивается и зависит только от размеров сосуда, со стенками которого они сталкиваются. Следовательно, вакуумом можно назвать состояние, когда частицы газа, находясь в определенном объеме, не соприкасаются друг с другом.
Основная единица измерения вакуумного давления – Па. Но паскаль достаточно большая величина для измерения разряжения, поэтому в физике часто используются другие величины, такие как бар, мм.рт.ст., торр, физическая атмосфера.
Соотношение единиц измерения вакуума в физике.
Информация о вакуумных системах и компонентах: понятие вакуума, примеры использования
Общая информация: понятие вакуума и единицы измерения
Количественной характеристикой вакуума служит абсолютное давление. Основной единицей измерения давления в Международной системе (СИ) служит Паскаль (1 Па = 1Н/м 2 ). Однако, на практике встречаются и другие единицы измерения, такие как миллибары (1 мбар = 100Па) и Торры или миллиметры ртутного столба (1 мм.рт.ст. = 133,322 Па). Данные единицы не относятся к СИ, но допускаются для измерения кровяного давления.
Уровни вакуума
В зависимости от того, на сколько давление ниже атмосферного (101325 Па), могут наблюдаться различные явления, вследствие чего могут использоваться различные средства для получения и измерения такого давления. В наше время выделяют несколько уровней вакуума, каждый из которых имеет свое обозначение в соответствии с интервалами давления ниже атмосферного:
Данные уровни вакуума в зависимости от области применения разделяют на три производственные группы.
— Низкий вакуум: в основном используется там где требуется откачка большого количества воздуха. Для получения низкого вакуума используют электромеханические насосы лопастного типа, центробежного, насосы с боковым каналом, генераторы потока и т.д.
Низкий вакуум применяется, например, на фабриках шелкотрафаретной печати.
Такой уровень вакуума используется в основном при лиофилизации, металлизации и термообработке. В науке технический вакуум используется в качестве симуляции космического пространства.
Наивысшее значение вакуума на земле значительно меньше значения абсолютного вакуума, которое остается чисто теоретическим значением. Фактически, даже в космосе, несмотря на отсутствие атмосферы, имеется небольшое количество атомов.
Основным толчком к развитию вакуумных технологий послужили исследования в промышленной области. В настоящий момент существует большое количество применений в различных секторах. Вакуум используется в электролучевых трубках, лампах накаливания, ускорителях частиц, в металлургии, пищевой и аэрокосмической индустрии, в установках для контроля ядерного синтеза, в микроэлектронике, в стекольной и керамической промышленности, в науке, в промышленной роботехнике, в системах захвата с помощью вакуумных присосок и т.д.
КАК ВЫБРАТЬ ВАКУУМНЫЙ НАСОС. Часть 1: «Вакуум».
1. Введение.
При выборе вакуумного насоса (или компрессора) и оценке его пригодности для использования в той или иной технологии оперируют двумя главными характеристиками:
Вакуумный насос или компрессор, который в поиске у потенциального пользователя, должен, прежде всего, обеспечить требуемый уровень давления. Затем ставится задача получить это давление за определенный промежуток времени. Быстрота получения заданного значения давления определяется производительностью ( pumping speed ) вакуумного насоса. При этом газовые компрессоры нагнетают газы и формируют давления выше атмосферного. Вакуумные насосы генерируют давления ниже атмосферного, т.е. создают разрежение.
В этой статье речь пойдет о низком давлении, т.е. о ВАКУУМЕ, как об основной технической характеристике всех вакуумных насосов. Создание или генерирование устройством вакуума – это динамический процесс понижения атмосферного давления в объеме и во времени. При поисках и выборе вакуумного насоса по уровню вакуума обычно говорят о двух характеристиках вакуумного насоса, связанных с давлением:
Предельное остаточное давление – это самое хорошее (высокое) значение вакуума, которое позволяет достигнуть конструкция этого вакуумного насоса. Важно понимать, что когда вакуумный насос достигает этого предельного значения вакуума, производительность откачки газов становится равной нулю, т.е. откачка прекращается, и в дальнейшем при работе насоса это значение предельного давления будет поддерживаться как некое достигнутое равновесное состояние системы «насос-откачиваемый объём».
Как правило, значение предельного остаточного давления достигается лишь при работе вакуумного насоса в режиме «сам на себя», т.е. при заглушенном входном патрубке. Это объясняется довольно просто: при подключении к насосу технологических объемов (емкости, трубопроводы, стыки, камеры и др.) всегда существуют течи (негерметичности) или явления газовой десорбции, которые не позволяют достичь в откачиваемом объеме максимальное значение вакуума, который способен создать сам насос.
Рабочее давление – это заданное значение вакуума, которое требуется обеспечить и поддерживать вакуумным насосом в той или иной технологии или техпроцессе.
При выборе вакуумного насоса его предельное остаточное давление должно быть немного лучше чем рабочее. Это как бы обеспечивает некий «запас прочности», т.е. гарантию того, что требуемое в техпроцессе давление будет достигнуто с помощью именно этого вакуумного насоса.
2. Давление газов в объёме. Атмосферное давление. Понятие «ВАКУУМ».
Давление газов в замкнутом объёме – это суммарное усилие, оказываемое ударами (толчками) постоянно движущихся молекул газов в стенки объёма, в результате их постоянного броуновского движения и сталкивания друг с другом и с твёрдыми стенками сосуда.
Основная единица измерения давления в системе СИ – это «Па» (Паскаль):
1 Па = 1 Н / м 2 = 0,01 мбар [ 1 ]
Другие общепринятые единицы измерения давления и их соотношения приведены в Таблице 1:
| Таблица 1 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Единица измерения давления | бар | мбар | мм. рт. ст. | м вод. ст. | Па | кПа | МПа | атм. | ат. | кгс/см 2 | psi |
| Бар ( bar ) | 1 | 1000 | 750 | 10,2 | 100 000 | 100 | 0,1 | 0,9869 | 1,02 | 1,02 | 14,5 |
Атмосферное давление – это давление, которое оказывает масса воздушного столба, как смесь газов, простирающихся на высоту более 1000 км от уровня поверхности земли и океана. При этом надо понимать, что чем выше от поверхности моря находится точка измерения этого атмосферного давления, тем атмосфера менее сконцентрирована, тем смесь газов реже (как бы их масса разбавляется в огромном увеличивающемся с высотой объёме) и, как следствие, давление этой смеси газов падает с подъёмом на высоту (см. Рис. 2). Почему? Просто так издавна утроена планета Земля, вокруг которой существует атмосфера, как газовая аура вокруг шара. Благодаря этой атмосферной ауре живут организмы и проистекают самые жизненные реакции веществ, постоянно потребляющие кислород, и растения, которые этот кислород постоянно вырабатывают и восстанавливают т.н. кислородный атмосферный баланс. Самые яркие примеры – это ветер, горение (как процесс окисления) и дыхание живых организмов, животных, людей.
Кривая изменения атмосферного давления до высоты 12 км над уровнем моря показана на Рис. 3.
Земная атмосфера. Принято считать, что это смесь 14 основных «земных» газов (см. Рис. 1), из которых три составляют львиную долю, в целом более 99% (азот – более 78%, кислород – более 20%, паров воды может быть более 1%).
Земная атмосфера делится на зоны по параметрам давления и температуры: тропосферу, стратосферу, мезосферу и термосферу (см. Рис. 4).













