за счет чего атомы удерживаются в молекуле

За счет чего атомы удерживаются в молекуле

за счет чего атомы удерживаются в молекуле. Смотреть фото за счет чего атомы удерживаются в молекуле. Смотреть картинку за счет чего атомы удерживаются в молекуле. Картинка про за счет чего атомы удерживаются в молекуле. Фото за счет чего атомы удерживаются в молекуле

Теперь, основываясь на этих законах, можем (наконец-то) перейти и к типам химической связи. Если связь образована двумя элементами-металлами, то связь между ними будет металлическая, также будет называться и кристаллическая решётка металлов и их сплавов. Поскольку металлы склонны отдавать электроны, делают они это и в своих кристаллах, получается, что атомы металлов отдают свои валентные электроны во внешнее пространство, а сами ионизируются – превращаются в положительно заряженные частицы – катионы. Катионы находятся в узлах такой решётки, а их электроны свободно движутся по всему кристаллу, образуя электронное облако. Оно «не улетает» из-за электростатического взаимодействия с катионами, поэтому металлическая связь и не разваливается. Благодаря такой связи и металлической решётке металлы и их сплавы блестящие, твёрдые, ковкие материалы.

Иначе образуется связь между двумя атомами-неметаллами. Обоим нужны электроны для завершения валентного уровня, поэтому эти элементы, чтобы не остаться в проигрыше, образуют общие на двоих электронные пары. Такая связь называется ковалентной. Также атомы-неметаллы характеризуются ещё и тем, насколько сильно они притягивают к себе электроны. Эта способность называется электроотрицательностью – она растёт снизу вверх по группе (от иода к фтору), и слева направо по периоду (от лития к фтору). Если связь образована двумя одинаковыми неметаллами – в простом веществе – то их э.о. одинакова, электронная пара не смещена, и она будет называться ковалентной неполярной. Если же образуется соединение из разных атомов-неметаллов, то их э.о. будет разной и общая электронная пара будет смещена в направлении более э.о. элемента. Из-за того, что в одной части молекулы электронов – носителей отрицательного заряда – больше, чем в другой, молекула приобретает положительно и отрицательно заряженный полюс – становится диполем. Такая связь называется ковалентной полярной. Кристаллическая решётка соединений, образованных молекулами неметаллов, называется молекулярной. Она менее прочна, чем металлическая, у неё появляется такое свойство как летучесть.

Проще всего образуется связь между металлом и неметаллом: металл отдаёт свои «лишние» электроны атому-неметаллу, который с радостью достраивает ими свою валентную оболочку до восьмиэлектронной. При этом металл становится катионом – положительно заряженной частицей, а неметалл – анионом, отрицательно заряженной частицей. Причём, если в диполе более э.о. элемент просто стягивает на себя электронную плотность, они всё равно принадлежат всей молекуле, то здесь неметалл забирает эти электроны себе «насовсем». Ионы связаны между собой электростатически, а такая кристаллическая решётка называется ионной. Ионная связь присуща в первую очередь солям, которые образованы ионом металла и кислотным остатком.

Таким образом, мы можем выделить четыре типа связи, образующихся между атомами элементов: металлическую, ковалентную полярную и неполярную, ионную. Каждому из них соответствует свой тип кристаллической решётки, который обуславливает свойства соответствующих им веществ. Но не только атомы взаимодействуют между собой: химическая связь может образовываться и между целыми молекулами и их фрагментами. Именно межмолекулярным связям и будет посвящена следующая статья.

Источник

Теория молекулярных орбиталей

Связывание атомов в молекулах определяется тем, как перекрываются их волновые функции.

Атомы объединяются в молекулы благодаря химическим связям. Причем участвуют в образовании этих связей электроны, находящиеся во внешнем слое этих атомов. Существует несколько теорий, описывающих процесс связывания. Одна из них — теория валентных связей, в соответствии с которой связи между атомами образуются, когда атомы обмениваются электронными парами из перекрывающихся орбиталей. Другая — теория молекулярных орбиталей.

Такого рода приблизительные теории полезны, поскольку мы получаем простой, интуитивно понятный способ представления физических процессов. С другой стороны, современные компьютеры дают нам возможность с высокой точностью вычислить энергии связи, однако такие вычисления ничуть не приближают нас к пониманию того, что же происходит, когда атомы соединяются. Роль теорий как раз в том и состоит, чтобы дать нам это понимание.

В основе теории молекулярных орбиталей лежит представление о том, что электронная орбиталь в атоме описывается волновой функцией (см. Уравнение Шрёдингера). Теория объясняет, как при протекании химической реакции атомные орбитали преобразуются в молекулярные. Подобно большинству известных нам типов волн, волновые функции электронов в орбиталях претерпевают интерференцию. Оказывается, орбитали в молекулах можно, с хорошим приближением, представить как результат интерференции волновых функций атомов.

Например, рассмотрим, что происходит при взаимодействии двух атомных орбиталей соседних атомов. Если в области перекрывания орбиталей волновые функции претерпевают конструктивную интерференцию, электроны большую часть времени проводят между ядрами, притягивая атомы друг к другу. С другой стороны, если интерференция в области перекрывания деструктивная, электронная плотность между ядрами равна нулю, и между атомами возникает результирующая сила отталкивания. Таким образом, две атомные орбитали объединяются с образованием двух молекулярных орбиталей: одна стремится связать атомы (связывающая молекулярная орбиталь), а другая — оттолкнуть их (разрыхляющая молекулярная орбиталь). И их взаимодействие определяет, будет ли образована стабильная молекула.

Чтобы понять, как работает эта модель, попробуем разобраться, почему водород образует молекулу из двух атомов, а гелий — из одного. В образовании связи между двумя атомами водорода участвуют по одному электрону от каждого атома, а на низшей (связывающей) молекулярной орбитали как раз есть место для двух электронов. Электроны основное время находятся между ядрами, значит атомы притягиваются и молекула водорода может образоваться. У гелия же в образовании связи между двумя атомами участвуют четыре электрона, поэтому заняты как связывающая, так и разрыхляющая атомные орбитали. Численные вычисления показывают, что в этом случае будет преобладать эффект отталкивания, и, даже если молекулы гелия образуются, они будут крайне нестабильны. Поэтому молекула газа гелия состоит из одного атома.

Источник

Атомы: строительные блоки молекул

Если молекулы – основные структуры, задействованные в химии – это слова, из которых состоят все окружающие нас материалы, тогда атомы – это буквы, строительные блоки молекул. Слова бывают разной длины, и типичная молекула тоже может содержать несколько атомов, или несколько сотен, или даже сто тысяч атомов. Молекула столовой соли NaCl состоит из двух атомов, натрия Na и хлора Cl. Молекула воды H2O содержит два атома водорода и один кислорода. Молекула столового сахара C12H22O11 содержит 12 атомов углерода, 11 кислорода и 22 водорода, организованных определённым образом.

Откуда нам известно о существовании атомов? Иногда их можно «видеть», так же, как мы видим молекулы, которые они могут формировать. Не глазами, но более продвинутыми устройствами. Один из методов использует сканирующий туннельный микроскоп, способный показывать атомы в кристалле или даже передвигать их по одному. Другой метод использует нашу возможность захвата ионов (немного изменённых атомов – подробности ниже).

за счет чего атомы удерживаются в молекуле. Смотреть фото за счет чего атомы удерживаются в молекуле. Смотреть картинку за счет чего атомы удерживаются в молекуле. Картинка про за счет чего атомы удерживаются в молекуле. Фото за счет чего атомы удерживаются в молекуле

На фото – три иона, пойманных одновременно. На них падает свет, они поглощают его и снова испускают. Повторно испущенный свет можно обнаружить, благодаря чему мы можем увидеть, где находятся ионы – примерно так отражение света от небольшого, но яркого бриллианта может помочь нам найти его.

Сколько же типов атомов существует? Типы называются «химическими элементами» и точное их количество зависит от того, как их считать. Но допустим, что атомный алфавит состоит из примерно сотни химических элементов, а к тонкостям подсчёта вернёмся позже. Так же, как мы могли назначить буквам алфавита от А до Я номера от 1 до 33, каждому элементу назначается не только имя, но и атомный номер (обозначается «Z»). Самые простые атомы – у водорода, их атомный номер = 1. Самые сложные в изобилии встречаются в природе, это уран с атомным номером 92. Другие – кислород (8), азот (7), кальций (20), криптон (36), лантан (57), платина (78). Полный список ищите в периодической системе элементов Менделеева. У каждого элемента своя химия – то, как он ведёт себя внутри молекул – примерно так, как у каждой буквы есть свои правила, по которым она может встречаться в словах.

Вопросы, которые можно задать об атомах:

1. Из чего состоят атомы?
2. В чём смысл атомного номера?
3. Каков главный источник различий в химическом поведении атомов разных элементов?
4. До какой степени разные атомы одного элемента схожи между собой?
5. Как части атома удерживаются вместе?
6. Почему атомы удерживаются вместе и образуют молекулы?

Оказывается, на все эти вопросы лучше всего отвечать, начав с первого: из чего состоят атомы? Атомы состоят из того, что обычно называют «субатомными частицами» (к сожалению, этот термин некорректен, поскольку у этих «частиц» есть некоторые свойства, частицам не присущие). Конкретнее, атомы состоят из набора небольших и очень лёгких электронов, окружающих крохотное, но тяжёлое атомное ядро, в котором содержится большая часть массы атома. Ядро состоит из других «частиц», в свою очередь также состоящих из других «частиц», и мы до них ещё доберёмся.

Рисованный атом

Частенько мы видим изображения атомов, нарисованные на книгах по химии, на рекламках и предупреждающих знаках. Пример – рис. 1. Он передаёт очень грубую идею того, как устроен атом: снаружи у него есть определённое количество электронов (синие), и они вращаются вокруг центрального атомного ядра. Ядро – это скопление протонов (красные) и нейтронов (белые).

за счет чего атомы удерживаются в молекуле. Смотреть фото за счет чего атомы удерживаются в молекуле. Смотреть картинку за счет чего атомы удерживаются в молекуле. Картинка про за счет чего атомы удерживаются в молекуле. Фото за счет чего атомы удерживаются в молекуле

Теперь мы можем ответить на 2-й вопрос: что означает атомное число Z? Это просто количество протонов в ядре. У кислорода атомный номер 8, и у него в ядре 8 протонов.

В простейших условиях атомное число также равняется количеству электронов атома. С количеством нейтронов всё сложнее, мы вернёмся к этому позже. У электронов отрицательный электрический заряд (-е), а у протонов – положительный (+е). Нейтроны нейтральны, электрического заряда у них нет. Когда количество электронов и протонов совпадает, их заряды взаимно уничтожаются, и у атома электрического заряда не наблюдается – такой атом нейтрален.

Но нет ничего необычного – к примеру, в процессе формирования молекул – если атом приобретёт или потеряет один или несколько внешних, валентных электронов. В этом случае электрические заряды электронов и протонов не уничтожаются, и получившийся заряженный атом называют ионом.

Более реалистичный атом

Хотя рис. 1 примерно описывает архитектуру атома – электроны действительно находятся снаружи, а ядро, состоящее из протонов и нейтронов, в середине – он совершенно не передаёт реальную форму и суть атома, поскольку он выполнен не в масштабе, а мы живём в квантовом мире, в котором объекты ведут себя так, что их сложно нарисовать или представить.

С проблемой масштаба можно разобраться, нарисовав более точное (хотя всё ещё несовершенное) изображение, рис. 2.

за счет чего атомы удерживаются в молекуле. Смотреть фото за счет чего атомы удерживаются в молекуле. Смотреть картинку за счет чего атомы удерживаются в молекуле. Картинка про за счет чего атомы удерживаются в молекуле. Фото за счет чего атомы удерживаются в молекуле
Рис 2. Атом – по большей части пуст (серая область). По нему быстро движутся электроны (голубые точки, нарисованы не в масштабе, а гораздо больше). В центре находится тяжёлое ядро (красные и белые точки, нарисованы больше, чем в масштабе).

Вот, что я попытался передать этим изображением. Во-первых, электроны очень, очень малы, настолько малы, что мы так и не смогли измерить их размер – может статься, что они точечные и не имеют размера, но они точно не больше, чем 1/100 000 000 от диаметра атома. Во-вторых, ядра (и протоны с нейтронами, их составляющие) также крайне малы, хотя они и больше, чем электроны. Их размер измерен, и он примерно в 10 000 – 100 000 раз меньше диаметра атома. Атом немного похож на деревню. Протоны и нейтроны в ядре – большие дома, находящиеся в центре деревни, а электроны – далеко разбросанные фермерские домики. На большей части сельской местности растут зерновые культуры и нет домов. И хотя территория, считающаяся частью деревни, может быть большой, реально занимаемая домами площадь очень мала.

Но эта аналогия не полная, поскольку электроны, в отличие от фермерских домиков, очень быстро двигаются по серому региону на картинке и вокруг ядра со скоростями порядка 1% от скорости света. Покрываемая ими территория обычно не сферическая, а более сложной формы, кроме того не все электроны перемещаются по одной и той же территории.

Но, как я вас предупреждал, рис. 2 тоже не точный. Во-первых, нужно было бы нарисовать ядро в тысячи раз меньше, а электроны – в миллионы раз меньше, только тогда их не было бы видно. Если бы атом был размером с вашу спальню, то его ядро было бы размером с пылинку. По сравнению со своими компонентами, атомы огромны! В каком-то смысле большую часть атома составляет пустота!

Во-вторых, изображение не передаёт мутную природу квантовой механики. Уравнения квантовой механики описывают и предсказывают поведение молекул, атомов и субатомных частиц, и эти уравнения говорят нам, что у этих частиц могут быть очень странные и неинтуитивные свойства. Хотя электроны в каком-то смысле точечные (допустим, если вы захотите столкнуть два электрона друг с другом, то обнаружите, что можете сдвинуть их вместе на сколь угодно малое расстояние, и они ничем не выдадут своей внутренней структуры, если она вообще есть), есть возможность сделать так, что они, будучи оставленными в покое, будут распространяться как волна и заполнят всё серое пространство на рис. 2. Если это звучит странно, это не оттого, что вы чего-то не поняли: это странно и об этом тяжело думать. Я-то уж точно не знаю, как нарисовать атом, чтобы не вводить вас в заблуждение, и эксперты всё ещё спорят о том, как лучше всего о нём думать. Так что пока просто примите это как странный факт.

Размер электрона слишком мал для измерения, и его масса настолько мала, что электрон может распространиться по всему атому. А вот у ядра есть вполне измеренный и известный размер, а его масса так велика – больше 99,9% массы всего атома – что оно вообще не распределяется в пространстве. Ядро сидит в середине серой области.

Атом и его химия

Лучший приходящий мне в голову способ описать атом: большая часть массы атома содержится в ядре, находящемся в его центре, вокруг которого распределились чрезвычайно мелкие электроны гораздо меньшей массы, причём сделали это совершенно не так, как ведут себя частицы, заполнив всю серую область рис. 2.

Небольшой размер ядра по отношению к полному размеру атома, и то, что оно обычно находится в его центре, объясняет, почему оно играет относительно слабую роль в химии. Химия происходит – то есть, формируются и меняются молекулы – когда атомы приближаются друг к другу, а это происходит, когда внешние, валентные электроны одного атома близко подходят к внешним электронам другого – когда край серой области одного атома приближается к краю серой области другого. В химических процессах атомное ядро остаётся в центрах атомов, и никогда не приближается к другим ядрам. Основная роль ядра – обеспечение положительного заряда, удерживающего электроны, и большей части массы (определяющей, как сложно другим объектам передвигать этот атом).

Это отвечает на 3-й вопрос: химию атома в основном определяют подробности, связанные с его внешними электронами. Эти детали можно узнать (сложным способом, через уравнения квантовой механики), исходя из атомного номера Z.

Вместо того, чтобы заняться химией – темой, которой хватит на целый курс – мы перейдём на уровень ниже, к субатомным частицам, по пути отвечая на другие вопросы. Перечислим вопросы, с которыми мы разобрались, и вопросы, которые ещё предстоит изучить.

1. Из чего состоят атомы? Снаружи – электроны, в центре – атомное ядро (из протонов и нейтронов).
2. В чём смысл атомного номера? Это количество протонов в ядре атома, которое, в обычных условиях равно количеству электронов, его окружающих.
3. Каков главный источник различий в химическом поведении атомов разных элементов? Свойства внешних электронов, определяемые общим количеством электронов у каждого элемента, к примеру, атомным номером.
4. До какой степени разные атомы одного элемента схожи между собой? Обсудим это в статье про изотопы.
5. Как части атома удерживаются вместе? Обсудим это в статье о роли электрических сил и квантовой механики.
6. Почему атомы удерживаются вместе и образуют молекулы? Обсудим это в статье о роли электронов и электрических сил в построении молекул из атомов.

А вот вам ещё вопрос, который мог возникнуть при изучении рис. 2:

Если атом – по большей части пуст, почему объекты кажутся твёрдыми? Почему нельзя протянуть руку через экран компьютера, если экран состоит из атомов, по большей части пустых?

Источник

Молекулы без химических связей

В школе мы учили на уроках химии, что атомы в молекулах удерживаются химической связью: ковалентной полярной, ковалентной неполярной. Бывает ионная связь — в кристаллах, бывают связи двухцентровые и многоцентровые. А можно ли построить классическую молекулу, например органического вещества, без химической связи? Как ни странно, правильный ответ на этот вопрос «отчасти — да». Бывают молекулы, разные части которых удерживаются исключительно механически. Но обо всём по порядку.

Супрамолекулярная химия

Можно сказать, что такие молекулы, где одна часть удерживается в другой чисто механически, случайно синтезировал в 1967 году сотрудник компании DuPont Чарльз Педерсен. Он получил ставшие знаменитыми краун-эфиры, которые как корона «надеваются» на большой ион щелочного металла и образуют устойчивые комплексы. Однако, конечно, несмотря на Нобелевскую премию по химии 1987 года, которую получил Педерсен, назвать совсем механической такую связь нельзя — взаимодействие в комплексе происходит между атомами кислорода или азота и щелочными металлами.

за счет чего атомы удерживаются в молекуле. Смотреть фото за счет чего атомы удерживаются в молекуле. Смотреть картинку за счет чего атомы удерживаются в молекуле. Картинка про за счет чего атомы удерживаются в молекуле. Фото за счет чего атомы удерживаются в молекуле

Чуть более жесткими эти комплексы сделал второй лауреат того же года — Жан-Мари Лен, создавший криптанды. Его вещества были уже не короной, а целой чашкой — ровно на один или два иона. Тем не менее взаимодействие между гостем и хозяином в комплексе было все еще не только механическим. Однако именно Лен дал название науке, которая занимается подобными веществами, супрамолекулярная химия — «химия, вышедшая за пределы молекулы».

Сделать то, о чем мы говорим, смог третий лауреат 1987 года, Дональд Джеймс Крам, который, развивая идею комплексов «гость–хозяин», создал новый тип молекул — карцеранды. Эта органическая молекула представляет собой «клетку», «карцер», внутри которого заключена другая молекула, будь то большой атом инертного газа или, скажем, маленькая молекула органического вещества.

за счет чего атомы удерживаются в молекуле. Смотреть фото за счет чего атомы удерживаются в молекуле. Смотреть картинку за счет чего атомы удерживаются в молекуле. Картинка про за счет чего атомы удерживаются в молекуле. Фото за счет чего атомы удерживаются в молекуле за счет чего атомы удерживаются в молекуле. Смотреть фото за счет чего атомы удерживаются в молекуле. Смотреть картинку за счет чего атомы удерживаются в молекуле. Картинка про за счет чего атомы удерживаются в молекуле. Фото за счет чего атомы удерживаются в молекуле

Однако хочется чего-то большего: в карцеранде части молекулы неравноправны, одна «спрятана» внутри другой. Можно представить себе еще более восхитительные варианты. Существует целых четыре типа молекул с настоящей механической связью, и все они были синтезированы в лабораториях. Для них даже была придумана общая аббревиатура MIMA. В переводе на русский — «механически запертые молекулярные архитектуры» (mechanically interlocked molecular architectures).

Вот эти четыре типа: катенаны, ротаксаны, молекулярные узлы и молекулярные кольца Борромео. Все эти молекулы отличает то, что их части удерживает вместе исключительно механическое взаимодействие — физическое соприкосновение частей не дает им распасться или изменить взаимоположение. Давайте посмотрим, что это за молекулы.

Катенаны

за счет чего атомы удерживаются в молекуле. Смотреть фото за счет чего атомы удерживаются в молекуле. Смотреть картинку за счет чего атомы удерживаются в молекуле. Картинка про за счет чего атомы удерживаются в молекуле. Фото за счет чего атомы удерживаются в молекуле

Первыми из этой великолепной четверки были синтезированы катенаны. Латинское слово «catena» означает «цепь»

Действительно, катенаны — это два или более замкнутых цикла, продетых друг в друга.

Первые синтезы катенанов представляли собой реакции циклизации длинных цепочек в присутствии других кольцевых молекул. Надеялись лишь на случай: вдруг какая-то часть молекул во время замыкания циклов окажется продетой в уже существующий цикл. Однако выходы таких реакций всегда оказываются микроскопическими.

Поэтому Готфридом Шиллом, первопроходцем этой темы, был разработан направленный метод синтеза, когда сперва будущие кольца соединены перемычками, а после того как два или три звена цепочки колец собраны, перемычки разрушались. Первый [2]-катенан (два продетых друг в друга кольца) получилось «построить» еще до синтеза первых краун-эфиров, в 1964 году. В 1969 году появился и [3]-катенан. Опять же трудами Шилла.

За последующие годы прогресс в синтезе катенанов оказался огромным. К примеру, сэр Джеймс Фрезер Стоддарт (получивший рыцарское звание за свои успехи в органическом синтезе) в 1994 году сумел соединить, подобно известной эмблеме, пять колец. Разумеется, этот [5]-катенан назвали «олимпиаданом». А рекордное количество звеньев в таких цепочках пока что равно семи.

Кроме того, появились новые типы катенанов: претцеланы, в которых кольца продеты друг в друга, но еще и соединены молекулярным мостиком. Также синтезированы «катенаны в форме наручников» (вполне официальное название — handcuff-shaped catenanes). Почему они так названы, можно понять, посмотрев на их топологию.

Кстати, существуют катенаны и в природе — молекулярным биологам давно известны катенановые ДНК.

Ротаксаны

за счет чего атомы удерживаются в молекуле. Смотреть фото за счет чего атомы удерживаются в молекуле. Смотреть картинку за счет чего атомы удерживаются в молекуле. Картинка про за счет чего атомы удерживаются в молекуле. Фото за счет чего атомы удерживаются в молекуле

Ротаксан. Это название образовано из двух слов: rotor — «вращение» и axis — «ось»

Такие молекулы представляют собой длинную молекулярную цепочку, продетую сквозь цикл. Однако соскользнуть с оси циклу мешают массивные группы атомов на концах цепи. Пионером здесь тоже оказался Готфрид Шилл — первый направленный синтез ротаксана он провел еще в 1968 году.

Сейчас именно ротаксаны стали объектом пристального внимания и биологов, и нанотехнологов. Современные ученые рассматривают такие структуры как элементы молекулярных машин — уже построены ротаксановые молекулярные переключатели, «молекулярные мышцы», которые позволяют осуществлять механическое движение частей молекул и на их основе строить самые маленькие нанороботы. Кроме того, молекулярные биологи уже обнаружили аналоги ротаксанов в природе — на ротаксановом принципе построено действие так называемых лассо-пептидов, которые обхватывают свою цель, стягивая цикл. Среди таких пептидов обнаружены и новые антибиотики.

Молекулярные кольца Борромео

Простые кольца Борромео видели все, хотя и не знали, что они так называются. Это просто три кольца, попарно продетые друг в друга. Термин происходит от названия браслета, принадлежавшего итальянскому аристократическому семейству Борромео.

за счет чего атомы удерживаются в молекуле. Смотреть фото за счет чего атомы удерживаются в молекуле. Смотреть картинку за счет чего атомы удерживаются в молекуле. Картинка про за счет чего атомы удерживаются в молекуле. Фото за счет чего атомы удерживаются в молекуле

Сравнительно недавно химики научились синтезировать и такие молекулы. Вот, посмотрите на структуру. В 2004 году Джеймс Фрезер Стоддарт сумел путем красивой сборки из 18 компонентов получить эту сложную молекулу. Годом позже знаменитая медиакомпания Thomson Reuters даже предрекала Стоддарту Нобелевскую премию по химии по совокупности умопомрачительных синтезов, но пока что это предсказание не сбылось.

Молекулярные узлы

Здесь все просто: молекула представляет собой неразрывную замкнутую структуру, к тому же завязанную в узел. Химики называют такие молекулы кнотанами — от английского слова knot — «узел».

за счет чего атомы удерживаются в молекуле. Смотреть фото за счет чего атомы удерживаются в молекуле. Смотреть картинку за счет чего атомы удерживаются в молекуле. Картинка про за счет чего атомы удерживаются в молекуле. Фото за счет чего атомы удерживаются в молекуле

Органики научились синтезировать и такое, и даже несколько узлов одновременно. Первый узел в форме трилистника был синтезирован французским химиком Жаном-Полем Саважем в 1989 году.

Существуют и биологические «узлы». Среди них — достаточно важный человеческий гликопротеин лактоферрин, который встречается в молоке, слезах и других выделениях человека.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *