загрязнение воздуха no2 что это
Диоксид азота в воздухе
Диоксид азота относится к одним из самых распространенных видов выбросов в атмосферу, имеющих антропогенное происхождение. Он образуется в ходе протекания фотохимических реакций оксидов в атмосфере. Их источниками в свою очередь являются различные продукты сгорания и отходы предприятий промышленного сектора.
Особенности диоксида азота
Диоксид азота имеет формулу NO2 и представляет собой газ характерного бурого цвета. Его отличительной особенностью является резкий, удушливый запах. Также вещество может переходить в другое агрегатное состояние под влиянием определенных температур – при высоких значениях диоксид становится жидкостью. Она полностью теряет характерный для газообразного состояния цвет, но сохраняет удушливый запах.
Из-за своего цвета выбросы диоксида азота вследствие деятельности химических предприятий получили название «лисий хвост». Стоит отметить, что оранжево-бурый цвет соединения присутствует только при определенных температурах – при их снижении двуокись азота обесцвечивается из-за димеризации. Заметнее всего так называемые «лисьи хвосты» в летнее время года, поскольку в этот период в выбросах повышается концентрация мономерной формы.
Опасность двуокиси азота для организма человека
Оказываясь в организме, диоксид азота нарушает работу органов дыхания путем агрессивного воздействия на слизистые оболочки, вызывая при продолжительном контакте бронхит и эмфизему. Токсичное вещество может принадлежать к одной из трех категорий, в зависимости от содержания в рабочей зоне: малоопасной, умеренной и чрезвычайно опасной.
Опасность отравления диоксидом азота состоит в том, что на первых этапах оно практически незаметно и проходит бессимптомно. Симптомы проявляются только в случае попадания значительного объема газа в организм. Первыми признаками отравления считаются головная боль, общая слабость, боли в области груди, кашель и спазмы. При усугублении интоксикации растет температура тела, усиливается тошнота, появляется кашель с мокротой, а также нарушается работа легких и других органов дыхания.
К группе особого риска отравления двуокисью азота относятся жители крупных городов индустриального типа, так как именно в них концентрация токсичного вещества чаще всего превышает допустимые нормы. Для определения уровня содержания диоксида азота необходим химический анализ атмосферного воздуха, который позволяет выявить степень заражения веществом.
Предельно допустимая концентрация двуокиси азота
Все без исключения загрязняющие вещества должны соответствовать определенным нормам ПДК в воздухе. Соблюдение данных норм на производстве отслеживается специальными органами по регионам. В случае нарушения, в частности, при работе предприятий, на организации могут накладываться штрафы, а также более серьезные санкции, вплоть до закрытия.
NO2 относится ко второму классу опасности.
При концентрации, присутствующей в атмосфере, двуокись азота считается потенциальным раздражителем, но даже в таком количестве она может негативно воздействовать на детский неокрепший организм. Так, дети возрастом 2-3 года могут заболевать бронхитом.
Проведение анализа на наличие диоксида азота
Для выявления диоксида азота в воздухе, а также определения его концентрации может использоваться несколько методов. Их эффективность зависит от конкретной ситуации, а выбор осуществляется профильными специалистами. Среди самых распространенных методов можно назвать высокоэффективную газовую хроматографию и гравиметрию.
Измерение уровня загрязнения воздуха в лаборатории «НОРТЕСТ»
С целью принятия оперативных мер по очистке воздуха от загрязнений, в том числе связанных с диоксидом азота, может потребоваться проведение соответствующих анализов. Испытательный центр «НОРТЕСТ» готов выполнить необходимые независимые исследования, гарантируя достоверные результаты и действуя в соответствии с установленными стандартами.
Наша лаборатория оснащена необходимым оборудованием для проведения анализов разной сложности. Также наши специалисты могут выехать на объект для забора проб и их безопасной доставки в центр. В случае определения повышенной концентрации диоксида азота, мы поможем в разработке решений, направленных на очистку воздуха от вредных примесей. Для этого может использоваться несколько способов, включая окисление, а также сорбционные методики.
Полезные статьи
Натрий в питьевой воде
Анализ почвы и воды в современном испытательном центре
Методы определения нефтепродуктов в почвах и грунтах
Загрязнение воздуха диоксидом азота связали с высокой смертностью от COVID-19
Загрязнение воздуха диоксидом азота связано с высокой смертностью от COVID-19. К такому выводу пришли ученые из Университета Мартина Лютера в Галле-Виттенберге, исследование которых опубликовано в журнале Science of the Total Environment.
Читайте «Хайтек» в
Диоксид азота (NO2) — загрязнитель воздуха, который повреждает дыхательные пути человека. Он выбрасывается в атмосферу в результате деятельности человека. При контакте диоксида углерода с влажной поверхностью легких образуются азотная и азотистая кислоты, раздражающие слизистые оболочки и поражающие альвеолярную ткань легких. При высоких концентрациях оксидов азота (0,004 — 0,008 %) возникают астматические проявления и отек легких.
«Поскольку новый коронавирус также влияет на дыхательные пути, разумно предположить, что может быть корреляция между загрязнением воздуха и числом смертей от COVID-19»
Ярон Оген, ведущий автор исследования
В новом исследовании ученые использовали данные об уровнях регионального загрязнения диоксидом азота, измеренных спутником Sentinel 5P Европейского космического агентства (ESA). Затем ученые объединили эту информацию с данными американского агентства погоды NOAA о вертикальных воздушных потоках.
На основании этих данных исследователи выяснили несколько наиболее загрязненных NO2 точек со слабым движением воздушных масс, а затем сопоставили данные о вспышке COVID-19 в Италии, Франции, Испании и Германии.
Работа показала, что в регионах с большим количеством смертей также отмечается особенно высокий уровень диоксида азота и особенно низкий уровень вертикального воздухообмена.
«Постоянное загрязнение воздуха в пострадавших регионах могло привести к ухудшению общего состояния здоровья людей, живущих там, что делает их особенно восприимчивыми к вирусу. Тем не менее, наше исследование является лишь начальным показателем того, что может существовать корреляция между уровнем загрязнения воздуха, движением воздуха и тяжестью заболевания новым типом коронавируса»
Ярон Оген, ведущий автор исследования
Ранее сообщалось, что новый метод анализа генетических кодов SARS-CoV-2 ускорит разработку вакцины — инструмент поможет понять, как развиваются его штаммы.
«Лисий хвост»: 6 этапов убийства человека
«Черный юмор» химиков объясняется просто: диоксид азота – это знакомый многим рыже-бурый дым, клубящийся из труб теплоэлектростанций, нефтеперерабатывающих, нефтехимических и металлургических заводов, а также заводов, производящих азотную кислоту, различные удобрения и утилизирующих твердые бытовые отходы. Он, действительно, с виду напоминает пышный лисий хвост.
Откуда он берется? Дело в том, что в результате горения любого топлива выделяется оксид азота NO, который, будучи выпущен в атмосферу, быстро соединяется с кислородом, и превращается в диоксид азота NO2. Специалисты считают, что 90% этих зловредных веществ попадает в нашу атмосферу именно из-за человеческой деятельности, в том числе, из-за выхлопных газов автомобилей. Да-да, первым по объему выбросов диоксида азота в атмосферу в больших городах является автотранспорт!
Ученые отмечают, что именно в утренний «час пик» в воздухе над городами повышается концентрация NO, а стоит подняться солнцу и прогреть атмосферу, как в результате фотохимического окисления оксид азота превращается в еще более вредный и опасный NO2.
И не стоит радоваться, если в прохладное время года вы не видите знакомых рыжих клубов дыма или серо-желтого смога, городской воздух вам только кажется прозрачным и чистым: при низких температурах рыжий «лисий хвост» становится бесцветным, но он есть. И по-прежнему влияет на раннюю желтизну и бурые пятна на листьях деревьев, их увядание и гибель, на формирование кислотных облаков и осадков. Ведь при взаимодействии NO2 с водой образуется – азотная кислота!
Именно это свойство – образование азотной кислоты при реакции NO2 с водой – оказывает губительное воздействие на организм человека. Представьте, все наши слизистые являются влажными, т.е. содержат воду. А это значит, при вдыхании паров NO2 в горле, носоглотке, на стенках альвеол легких образуется HNO3, которая разъедает эти органы, запускается процесс разрушения человеческого организма.
Итак, 6 этапов убийства человека диоксидом азота:
1. В первые десять минут, вдыхая диоксид азота, человек ощущает специфический запах, но через 10 минут уже «принюхивается» и не улавливает его, так как умирают рецепторы запаха. И ощущение неприятной сухости в горле со временем и, как ни странно, с ростом концентрации NO2 проходит, но это коварный и ложный комфорт, ведь тем временем диоксид продолжает свое ужасное дело.
2. Показания уровня гемоглобина в крови человека падает, это чревато падением защитных сил организма.
3. Диоксид азота влияет и на зрение человека: его воздействие на слизистую глаз приводит к ухудшению способности видеть в условиях малой освещенности. Пороговая концентрация NO2, изменяющая световую чувствительность глаза, 0,14 мг/м3.
4. Стенки альвеол легких разъедаются, становятся легко проницаемыми. В результате сыворотка крови попадает в полость легких. При вдыхании воздух с жидкостью образуют пену, которая нарушает естественный газообмен и чревата развитием отека легких.
5. При контакте со щелочными средами организма NO2 образуются вредные нитраты и нитриты – те самые, которых мы так боимся в овощах и фруктах. Нитриты приводят к угнетению центральной нервной системы, расширяют кровеносные сосуды, снижают артериальное давление и пр.
6. В конце концов, нитраты в кишечнике трансформируются в канцерогенные нитрозамины, которые рано или поздно приводят к раку.
Вот что таится за таким милым и пушистым названием – «лисий хвост»!
Ученые отмечают, что затруднение дыхания здоровый человек чувствует при концентрации NO2 всего 0,056 мг/м3, а склонный к заболеваниям легких – при 0,038 мг/м3. Даже молодые здоровые люди, переехав в крупные города, замечают – участились простуды, грипп. Влияние NO2 на организм даже в малых дозах снижает его сопротивляемость и запускает вредоносные болезненные процессы. Особенно остро это проявляется у детей.
Поэтому сегодня борьба против вредоносных выбросов диоксида азота, борьба за экологию – важнейшая задача для каждого из нас!
Механизм образования и негативное влияние выбросов, содержащих оксиды азота
Почему необходима очистка выбросов от оксидов азота
По разным оценкам, в атмосферу Земли ежегодно выбрасывается от 35 до 58 миллионов тонн оксидов азота. Основной источник выбросов — сжигание топлива в промышленности, теплоэлектростанциях, генераторных установках, домохозяйствах и двигателях внутреннего сгорания различного назначения. Последние вносят значительный вклад в загрязнение окружающей среды оксидами азота, поскольку в промышленно развитых странах их доля составляет 45—60 % от общего объема. Ограничить выбросы можно, используя методы очистки газов от оксидов азота непосредственно у источника их образования.
Оксиды азота повреждают легкие и увеличивают восприимчивость к инфекции верхних дыхательных путей. Вещество способствует возникновению раздражения глаз и расширению кровеносных сосудов, что приводит к снижению кровяного давления.
Для растений это высокотоксичный газ, более высокие концентрации которого приводят к повреждению хлоропластов. Реакции с углеводородами в атмосфере вызывают образование ацетилпероксида, который ингибирует фотосинтез. Реагируя с водой, диоксид азота образует азотную и азотистую кислоты и, таким образом, способствует (наряду с SO2) образованию так называемых кислотных дождей.
Азбука горения
>> Вернуться к содержанию Монооксид азота (NO) — это бесцветный, без запаха, плохо растворимый в воде газ. Он составляет более 90% от всех оксидов азота, образуемых при высокотемпературном горении. Если концентрация находится в пределах от 10 до 50 ppm. он не является сильно токсичным раздражающим веществом.
Диоксид азота (NO2 ) — это газ, который заметен даже при небольшой концентрации: он имеет коричневато-красноватый цвет и особый острый запах. При концентрации более 10 ppm. является сильным коррозийным веществом и сильно раздражает носовую полость и глаза. При концентрации более 150 ppm. вызывает бронхит, а свыше 500 ppm. — отек легких, даже если воздействие длилось всего несколько минут.
Монооксид азота NO, который присутствует в городском воздухе, может самопроизвольно переходить в диоксид азота NO2 при фотохимическом окислении.
Существуют три пути образования оксидов азота, различающиеся по способу происхождения, но не по химическому составу:
Тепловые оксиды азота, составляющие большинство, образуются при высокой температуре (Т>1500 К) и при условии высокой концентрации кислорода при окислении атмосферного азота в процессе горения. Тепловые оксиды образуются при сжигании газообразного топлива (природный газ и сжиженный нефтяной газ) и топлива, в котором не содержатся вещества, имеющие в своем составе азот
Быстрые оксиды азота образуются при связывании атмосферного азота углеводородными частицами (радикалами), которые присутствуют в зоне факела. Этот метод образования оксидов протекает с очень высокой скоростью (отсюда их название; быстрые). Образование быстрых оксидов прежде всего зависит от концентрации радикалов в корневой части факела. При окислительном пламени (горение происходит с избытком кислорода) их вклад незначителен, но при сжигании обогащенных смесей и при низкотемпературном горении их доля может достигать 25% от общего содержания оксидов азота.
Топливные оксиды азота образуются при окислении азотосодержащих веществ, присутствующих в топливе в зоне факела. Концентрация топливных оксидов может достигать значительных размеров, если содержание в топливе азотосодержащих веществ превышает 0,1% от веса. Как правило, это касается только жидкого и твердого топлива.
На рис. 5 показано соотношение между NOx разных типов в зависимости от типа топлива (при стандартных условиях горения):
Доля быстрых оксидов азота более или менее постоянна, в то время как доля топливных оксидов азота увеличивается при горении видов топлива с более высоким молекулярным весом. При этом доля тепловых оксидов азота снижается.
Рисунок 5. Типы NOx для разного топлива
1.4.2.1. Снижение уровня NOx при сжигании газообразного топлива
Содержание тепловых оксидов азота в газообразном топливе достигает 80% от общего количества выбросов. Снизить образование тепловых оксидов азота можно снизив температуру пламени.
Температуру пламени можно снизить различными путями:
1) снижением удельной тепловой нагрузки
Этот метод состоит в уменьшении мощности горения на единицу объёма камеры сгорания. Для этого необходимо «перерассчитать» мощность котла, то есть уменьшить его номинальную тепловую мощность (если это уже действующий котёл) или взять размер камеры сгорания с запасом (при проектировании новых объектов).
2) особой конструкции камеры сгорания
Этот метод состоит в использовании теплогенераторов, камера сгорания которых является не инверсионной, а имеет три хода по тракту дымовых газов. В котлах с инверсионными камерами сгорания дымовые газы при проходе к дымогарным трубам сужают пространство, в котором находится факел, до объёма меньшего, чем сама камера сгорания. Часть лучистой энергии, отражённой от стенок камеры сгорания, передаётся пламени, температура пламени повышается, и увеличивается образование тепловых оксидов азота. Тот же эффект наблюдается в установках с высокой температурой стенок камеры сгорания, например печах или котлах с высокой температурой теплоносителя.
3) предварительным смешиванием воздуха и газа
В обычных условиях системы сжигания настроены таким образом, чтобы работать с избыточным воздухом. Этот избыточный воздух снижает температуру горения ниже адиабатической температуры, а иногда ниже того уровня, при котором начинается образование оксидов азота (1500К)
Пламя является типичной турбулентной средой. В неё подаются два реагента, которые очень трудно равномерно смешать между собой. В результате в пламени создаются зоны с разной стехиометрией
В зонах со стехиометрическими или близкими к ним условиями, значение температуры настолько высоко, что появляются условия для образования тепловых NOx.
С учётом опасности тепловых NOx следует предотвратить появление этих условий или максимально снизить сферу их действий. Неравномерность концентрации газовоздушной смеси позволяют снизить: предварительное смешение газа с воздухом и стабилизация пламени. Это влечёт за собой снижение температуры пламени по всему объёму факела и приближение её к теоретически рассчитанному значению.
Дополнительный положительный эффект может дать равномерное распределение пламени. Лучше, если оно равномерно распределяется по широкой поверхности, не создавая маленьких язычков, внутри которых температура, как правило, более высока.
В качестве примера можно привести горелки с пористой поверхностью (из металла или керамики) или с волокнистой поверхностью, в которой имеются мельчайшие отверстия. Всё это необходимо для того, чтобы как можно аккуратнее смешать перед горением воздух и газ.
Несмотря на то, что в настоящий момент высокая стоимость и конструктивные ограничения препятствуют широкому внедрению этого метода, особенно для горелок большой мощности, он является очень многообещающим для значительного снижения выбросов NOx.
4) ступенчатое сжигание
Оксиды азота образуются быстрее, когда соотношение топлива и поддерживающего горение воздуха приближается к стехиометрическому Для того чтобы снизить скорость образования оксидов азота, можно создать систему горения использующую коэффициент избытка воздуха близкий к идеальному Внутри факела этой системы должны присутствовать зоны с, сильнотличающимся от стехиометрического, соотношением топливо-воздух. Используя аэродинамические характеристики факела и распределение топлива можно создавать чередующиеся зоны с избытком и недостатком воздуха, поддерживая в общем условия близкие к стехиометрическим.
5) рециркуляция продуктов горения
При растворении части дымовых газов в воздухе уменьшается содержание кислорода и понижается температура пламени: поэтому часть вырабатываемой в результате горения энергии немедленно передается инертным веществам, присутствующим в газообразном топливе.
Этот метод даёт очень хорошие результаты при работе с газообразным топливом: пропускаемые продукты горения и смесь поддерживающего горения воздуха и топлива легко смешиваются между собой.
В теплогенераторах малой мощности можно легко организовать рециркуляцию продуктов горения внутри камеры сгорания, благодаря особой конструкции головки горелки. Как правило, на рециркуляцию поступает довольно много продуктов горения (примерно 50%). Благодаря этому, смесь топлива и поддерживающего горение воздуха становится менее эффективной, а температура дымовых газов достаточно высокой (900 — 1000 К).
Рисунок 6. Функциональная схема процесса горения в газовой горелке — Голубое пламя
1 — Воздух для горения; 2 — Подача газообразного топлива; 3 — Струя газообразного топлива: 4 — Зона стабилизации пламени (горение при стехиометрических условиях); 5 — Рециркуляция продуктов горения; 6 — Горение вне стехиометрических условий — смесь воздуха для горения, газа и циркулирующими продуктами горения; 7 — «Холодная» зона пламени.
В теплогенераторах большой мощности, из-за большого сопротивления возникающего на головке горелки, сложно организовать подмес продуктов горения внутри камеры сгорания. Поэтому продукты горения подмешиваются в камеру сгорания из вне.
С помощью дополнительного вентилятора или с помощью вентилятора самой горелки часть продуктов горения забирается на выходе из теплогенератора и подаётся обратно в головку горелки для того, чтобы смешать с воздухом для горения.
Даже если при некоторых обстоятельствах рециркуляция газов внутри камеры сгорания может оказаться недостаточной для достижения очень низкого содержания NOx (данный случай относится к горелкам большой мощности), этот метод можно применять в сочетании со ступенчатым сжиганием, которое было описано выше.
Рисунок 7. Моноблочная горелка серии BGK (дизельное топливо — низкое содержание NOx)
1.4.2.2. Снижение уровня NOx при сжигании жидкого топлива
Основное различие между сжиганием газообразного топлива и сжиганием жидкого топлива, с точки зрения оксидов азота, состоит в том, что в последнем азот находится в виде азотосодержащих соединений. Азот является причиной образования оксидов NOx, которые дают значительный вклад в общее содержание NOx. Принципы образования тепловых и быстрых оксидов азота рассмотренные в предыдущем параграфе, приемлемы и для жидкотопливных горелок.
Что же касается топливных оксидов азота, то в восстановительной среде содержащийся в топливе азот, может переходить не во вредный NOx, а в простой и безопасный молекулярный азот N2. Для этого в некоторых областях факела нужно создать богатые топливом зоны и условия для процесса восстановления. Например, в область горения сначала подается 80% от общего количества поддерживающего горение воздуха вместе со 100% топлива, а затем подаются оставшиеся 20% воздуха для горения (добавочный воздух).
Применительно к горелкам малой и средней мощности бытового и коммерческого назначения этот метод пока проходит этап тестирования. Все эти методы всё ещё находятся в стадии эксперимента на бытовых и коммерческих горелках. А в промышленных горелках эта технология уже вносит свой ценный вклад.
>> Вернуться к содержанию
Способы уменьшения количества выбросов оксида азота
В настоящее время проблема загрязняющих газообразных выбросов решается двумя способами:
Снижение концентрации в процессе сжигания
Решение данной задачи связано с обеспечением необходимых параметров процесса сгорания в отношении «время — температура — состав газа». Для обеспечения данных условий применяется топливо высокого качества и тонкая регулировка системы подачи топлива до достижения необходимой концентрации оксидов азота в отработавших газах.
Очистка отходящих газов от оксидов азота. Когда невозможно полностью уменьшить выброс загрязняющих веществ во время сжигания топлива, отходящие газы дополнительно очищаются.
Состав кислотных дождей
Кислотные дожди — явление, которое является следствием поражения воздушной среды кислотными оксидами, вступающими в реакции с атмосферной влагой. Растворы серной и азотной кислот — главная составляющая осадков.
Соединения серы
Советуем почитать: Основные виды загрязнения воды: бактериальное, механическое, химическое
Соединения азота
Важнейшие азотистые соединения земной атмосферы, вызывающие кислотные дожди:
Каталитическая очистка газов от оксидов азота
Эффективность этой группы методов высока, поскольку некоторые из них позволяют снизить выброс в атмосферу на 90 % и более. Среди них наибольшее внимание уделяется селективному каталитическому восстановлению (СКВ, SCR). Этот способ был введен в начале семидесятых в Японии и до сих пор успешно используется в США и Германии. Он заключается в восстановлении оксидов азота аммиаком при 150—450 °C в присутствии катализатора. Процесс называется селективным, поскольку аммиак обладает более высокой реакционной способностью по отношению к оксидам азота, чем к кислороду.
В объеме отработанных газов доля монооксида азота составляет 90—95 % от суммарной концентрации оксидов азота, поэтому основная реакция
4NO + 4NH3 + O2 = 4N2 + 6H2O.
Диоксид азота, на долю которого приходится 5—10 %, реагирует по уравнению
2NO2 + 4NH3 + O2 = 3N2 + 6 H2O.
Небольшие количества кислорода, содержащиеся в отходящих газах, ускоряют селективное каталитическое восстановление оксидов азота, но более высокое содержание O2 оказывает неблагоприятное воздействие, снижая скорость процесса SCR.
Катализаторы SCR представляют собой оксиды переходных металлов, например ванадия, титана, молибдена. Ванадий-титановый катализатор отличает высокая активность при низких температурах. Срок службы составляет около 3 лет на угольных электростанциях и 5—7 лет на установках, работающих на нефтяном и газовом топливе.
Рисунок 1. Принципиальная схема системы SCR
1. Панель управления, 2. Двигатель внутреннего сгорания когенерационной установки, 3. Датчик оборотов двигателя, 4. Датчики NOx, 5. Датчик температуры (термопара), 6. Инжектор реагента, 7. Датчик давления, 8. Смеситель, 9. Насос для реагента, 10. Емкость с реагентом, 11. Катализатор гидролиза, 12. Катализатор SCR, 13. Катализатор для удаления аммиака.
Решения от «ЭКОЭНЕРГОТЕХ»
— лидер в поставках установок для очистки от оксидов азота в России. Предприятие разрабатывает и производит высокоэффективные системы для очистки дымовых газов от оксидов азота с учетом потребностей клиентов. К основным преимуществам создаваемой продукции относят:
Менеджеры компании проконсультируют по вопросам подбора оборудования. В установленные договором сроки организация осуществит поставки комплексных систем для очистки отработавших газов от различных источников, включая проектирование, ввод в эксплуатацию и техническое обслуживание.
Диоксид азота: влияние на человека
Вещество характеризуется высокой токсичностью. Диоксид азота в воздухе, даже находясь в относительно небольших концентрациях, способен приводить к существенным изменениям в организме человека. Является острым раздражителем, а также характеризуется общетоксическим действием. Воздействует в основном на органы дыхательной системы. В зависимости от концентраций наблюдаются различные последствия — от слабого раздражения слизистых оболочек глаз и носа до отека легких. Также может приводить к изменениям состава крови, в частности, способствует уменьшению содержания гемоглобина. Ниже рассмотрим подробнее некоторые из эффектов, которые способен вызывать у человека диоксид азота.