Углеродистое волокно что это

Углеродное волокно

Углеродное волокно — материал, состоящий из тонких нитей диаметром от 3 до 15 микрон, образованных преимущественно атомами углерода. Атомы углерода объединены в микроскопические кристаллы, выровненные параллельно друг другу. Выравнивание кристаллов придает волокну большую прочность на растяжение. Углеродные волокна характеризуются высокой силой натяжения, низким удельным весом, низким коэффициентом температурного расширения и химической инертностью.

Углеродистое волокно что это. Смотреть фото Углеродистое волокно что это. Смотреть картинку Углеродистое волокно что это. Картинка про Углеродистое волокно что это. Фото Углеродистое волокно что это

Углеродистое волокно что это. Смотреть фото Углеродистое волокно что это. Смотреть картинку Углеродистое волокно что это. Картинка про Углеродистое волокно что это. Фото Углеродистое волокно что это

Содержание

История

Впервые получение и применение углеродных волокон (УВ) (точнее, нитей) было предложено и запатентовано известным американским изобретателем — Томасом Эдисоном — в 1880 г. в качестве нитей накаливания в электрических лампах. Эти волокна получались в результате пиролиза хлопкового или вискозного волокна и отличались хрупкостью и высокой пористостью и впоследствии были заменены вольфрамовыми нитями. В течение последующих 20 лет он же предложил получать углеродные и графитированные волокна на основе различных природных волокон.

Вторично интерес к углеродным волокнам появился в середине XX в., когда велись поиски материалов, пригодных для использования в качестве компонентов композитов для изготовления ракетных двигателей. УВ по своим качествам оказались одними из наиболее подходящих для такой роли армирующими материалами, поскольку они обладают высокой термостойкостью, хорошими теплоизоляционными свойствами, коррозионной стойкостью к воздействию газовых и жидких сред, высокими удельными прочностью и жесткостью.

В 1958 г. в США были получены УВ на основе вискозных волокон. При изготовлении углеродных волокон нового поколения применялась ступенчатая высокотемпературная обработка гидратцеллюлозных (ГТЦ) волокон (900 °C, 2500 °C), что позволило достичь значений предела прочности при растяжении 330—1030 МПа и модуля упругости 40 ГПа. Несколько позднее (в 1960 г.) была предложена технология производства коротких монокристаллических волокон («усов») графита с прочностью 20 ГПа и модулем упругости 690 ГПа. «Усы» выращивались в электрической дуге при температуре 3600 °C и давлении 0,27 МПа (2,7 атм). Совершенствованию этой технологии уделялось много времени и внимания на протяжении ряда лет, однако в настоящее время она применяется редко ввиду своей высокой стоимости по сравнению с другими методами получения углеродных волокон.

Почти в то же время в СССР и несколько позже, в 1961 г., в Японии были получены УВ на основе полиакрилонитрильных (ПАН) волокон. Характеристики первых углеродных волокон на основе ПАН были невысоки, но постепенно технология совершенствовалась и уже через 10 лет (к 1970 г.) были получены углеродные волокна на основе ПАН-волокон с пределом прочности 2070 МПа и модулем упругости 480 ГПа. Тогда же была показана возможность получения углеродных волокон по этой технологии с еще более высокими механическими характеристиками: модулем упругости до 800 ГПа и пределом прочности более 3 ГПа. УВ на основе нефтяных пеков были получены в 1970 г. также в Японии.

Получение

Углеродистое волокно что это. Смотреть фото Углеродистое волокно что это. Смотреть картинку Углеродистое волокно что это. Картинка про Углеродистое волокно что это. Фото Углеродистое волокно что это

УВ обычно получают термической обработкой химических или природных органических волокон, при которой в материале волокна остаются главным образом атомы углерода. Температурная обработка состоит из нескольких этапов. Первый из них представляет собой окисление исходного (полиакрилонитрильного, вискозного) волокна на воздухе при температуре 250 °C в течение 24 часов. В результате окисления образуются лестничные структуры, представленные на рис. 1. После окисления следует стадия карбонизации — нагрева волокна в среде азота или аргона при температурах от 800 до 1500 °C. В результате карбонизации происходит образование графитоподобных структур. Процесс термической обработки заканчивается графитизацией при температуре 1600-3000 °C, которая также проходит в инертной среде. В результате графитизации количество углерода в волокне доводится до 99 %. Помимо обычных органических волокон (чаще всего вискозных и полиакрилонитрильных), для получения УВ могут быть использованы специальные волокна из фенольных смол, лигнина, каменноугольных и нефтяных пеков.

Дополнительная переработка УВ

Углеродные волокна могут выпускаться в разнообразном виде: штапелированные (резаные, короткие) нити, непрерывные нити, тканые и нетканые материалы. Наиболее распространенный вид продукции — жгуты, пряжа, ровинг, нетканые холсты. Изготовление всех видов текстильной продукции производится по обычным технологиям, так же как для других видов волокон. Вид текстильной продукции определяется предполагаемым способом использования УВ в композиционном материале, точно так же, как и сам метод получения композита. Основные методы получения композитов, армированных углеродными волокнами, являются обычными для волокнистых материалов: выкладка, литье под давлением, пултрузия и другие. В настоящее время выпускается ряд видов УВ и УВМ, основные из которых перечислены ниже.

Выпускают УВ и за рубежом: в США — Торнел®, Целион®, Фортафил®; в Великобритании — Модмор®, Графил®; в Японии — Торейка®, Куреха-лон® и т. д. [1]

Свойства

УВ имеют исключительно высокую теплостойкость: при тепловом воздействии вплоть до 1600—2000 °С в отсутствии кислорода механические показатели волокна не изменяются. Это предопределяет возможность применения УВ в качестве тепловых экранов и теплоизоляционного материала в высокотемпературной технике. На основе УВ изготавливают углерод-углеродные композиты, которые отличаются высокой абляционной стойкостью. УВ устойчивы к агрессивным химическим средам, однако окисляются при нагревании в присутствии кислорода. Их предельная температура эксплуатации в воздушной среде составляет 300—350°С. Нанесение на УВ тонкого слоя карбидов, в частности SiC, или нитрида бора позволяет в значительной мере устранить этот недостаток. Благодаря высокой химической стойкости УВ применяют для фильтрации агрессивных сред, очистки газов, изготовления защитных костюмов и др. Изменяя условия термообработки, можно получить УВ с различными электрофизическими свойствами (удельное объёмное электрическое сопротивление от 2·10 −3 до 10 6 ом/см) и использовать их в качестве разнообразных по назначению электронагревательных элементов, для изготовления термопар и др.

Активацией УВ получают материалы с большой активной поверхностью (300—1500 м²/г), являющиеся прекрасными сорбентами. Нанесение на волокно катализаторов позволяет создавать каталитические системы с развитой поверхностью.

Обычно УВ имеют прочность порядка 0,5—1 ГПа и модуль 20—70 ГПа, а подвергнутые ориентационной вытяжке — прочность 2,5—3,5 ГПа и модуль 200—450 ГПа. Благодаря низкой плотности (1,7—1,9 г/см³) по удельному значению (отношение прочности и модуля к плотности) механических свойств лучшие УВ превосходят все известные жаростойкие волокнистые материалы. Удельная прочность УВ уступает удельной прочности стекловолокна и арамидных волокон. На основе высокопрочных и высокомодульных УВ с использованием полимерных связующих получают конструкционные углеродопласты. Разработаны композиционные материалы на основе УВ и керамических связующих, УВ и углеродной матрицы, а также УВ и металлов, способные выдерживать более жесткие температурные воздействия, чем обычные пластики.

Применение

УВ применяют для армирования композиционных, теплозащитных, хемостойких в качестве наполнителей в различных видах углепластиков. Наиболее емкий рынок для УВ в настоящее время — производство первичных и вторичных структур в самолетах различных производителей, в том числе таких компаний как «Боинг» и «Эрбас» (до 30 тонн на одно изделие). По причине резко возросшего спроса в 2004—2006 гг. на рынке наблюдался большой дефицит волокна, что привело к его резкому подорожанию.

Источник

Углеродное волокно (карбон) – строительный материал будущего

Главная страница » Углеродное волокно (карбон) – строительный материал будущего

Углеродистое волокно что это. Смотреть фото Углеродистое волокно что это. Смотреть картинку Углеродистое волокно что это. Картинка про Углеродистое волокно что это. Фото Углеродистое волокно что это

Композиты CFRP (Carbon Fiber Reinforced Polymer) — современные облегчённые и прочные материалы. Этот вид композитов удачно применим для производства различных продуктов, используемых в повседневной жизни. Полимерный композит карбона – это структура, армированная волокнами углерода, выступающего в качестве главного компонента. Следует отметить: символ «Р» аббревиатуры CFRP допускает также расшифровку «пластик», а не только «полимер».

О композитных материалах будущего

Композиты CFRP, как правило, создаются с применением термореактивных смол:

Несмотря на тот факт, что термопластичные смолы используются в составе композитов CFRP, часто можно встретить несколько иную аббревиатуру, определяющую композит как CFRTP (Carbon Fiber Reinforced Thermoplastic Composites). В принципе, разница несущественная.

Тем не менее, при работе с композитами важно понимать все относимые к ним термины и аббревиатуры. Не менее важно понимать свойства композитов CFRP и все возможности участвующего в них силового компонента, коим является карбон.

Преимущества композитов CFRP

Композитные материалы, армированные углеродным волокном — карбоном, резко отличаются от обычных композитов, содержимое структуры которых характерно присутствием традиционных компонентов:

Поэтому свойства композитов CFRP являются более предпочтительными для современных технологий производства.

Углеродистое волокно что это. Смотреть фото Углеродистое волокно что это. Смотреть картинку Углеродистое волокно что это. Картинка про Углеродистое волокно что это. Фото Углеродистое волокно что этоТаким выглядит внешне строительный материал настоящего и будущего — углеродное волокно. Его также называют кратким, но ёмким словом — карбон

Этот вид материала значительно прочнее и жестче стекловолокна из расчёта на единицу веса. Остаётся лишь догадываться, какой будет разница, если сравнивать композиты из углеродного волокна с металлами.

Углеродистое волокно что это. Смотреть фото Углеродистое волокно что это. Смотреть картинку Углеродистое волокно что это. Картинка про Углеродистое волокно что это. Фото Углеродистое волокно что этоПока что карбон (углеродное полотно) достаточно активно применяется для производства отдельных деталей автомобилей высшего класса. На фото патрубок из карбона для мотора машины

Согласно исследованиям, при сравнении стали и CFRP, структура углеродного волокна с той же прочностью что у стали, будет весить в 5 раз меньше.

Этот момент приоткрывает очевидный интерес всемирно известных автомобильных компаний по отношению к технологиям с применением карбона вместо традиционной стали.

Если сравнивать композиты CFRP с алюминием, обладающим славой лёгкого металла, в объёмной составляющей алюминиевая структура с равной прочностью окажется в 1,5 раза тяжелее, нежели структура углеродного волокна.

Конечно, найдётся достаточное количество факторов, которые могут оказать влияние на отмеченные сравнения. К примеру, сорт и качество материалов способны изменить результаты. К тому же для композитов всегда важно учитывать производственный процесс, архитектуру волокон, качество.

Недостатки композитов CFRP

Композиты CFRP уникальные продукты, но есть серьёзная причина, заставляющая искать ответ на вопрос, отчего углеродное волокно активно не используется в гражданском строительстве.

Углеродистое волокно что это. Смотреть фото Углеродистое волокно что это. Смотреть картинку Углеродистое волокно что это. Картинка про Углеродистое волокно что это. Фото Углеродистое волокно что этоОдин из немногочисленных строительных проектов, где частично применялось углеродное волокно для создания экзотических форм. Но даже при малом внедрении материала эффект впечатляет

На текущий момент материалы CFRP остаются всё ещё сильно дорогостоящими. Правда, цена карбона нередко находится в прямой зависимости от конкретных факторов:

Сырьё углеродного волокна по цене за килограмм может варьироваться от 5-кратной до 25-кратной стоимости стекловолокна. А в случае сравнения продуктов из стали и композитов на основе CFRP, эта разница увеличивается ещё.

Таким образом, цена инновационного современного продукта является его первым главным недостатком. Второй недостаток карбона — электропроводимость. Углеродное волокно характеризуется как легко проводящее электрический ток.

Но этот недостаток сводится на нет, если отталкиваться от конкретной сферы применения. Для иных проектов электропроводимость углеродного волокна переходит из недостатка в преимущество.

Углеродистое волокно что это. Смотреть фото Углеродистое волокно что это. Смотреть картинку Углеродистое волокно что это. Картинка про Углеродистое волокно что это. Фото Углеродистое волокно что этоБлизкий родственник карбона — стекловолокно. Этот материал тоже обладает уникальными свойствами, но до углеродного волокна ему далеко. Единственное преимущество стекловолокна — свойства изолятора

Опять же, если сравнивать стекловолокно, этот продукт, напротив, характеризуется качественным изолятором. Именно поэтому многие технологии строятся на использовании стекловолокна.

Такие технологии невозможно перестроить на карбон или металл по причине наличия свойств высокой электропроводимости металла и углеродного волокна.

Карбон и перспективы развития

Углеродный волокнистый материал – карбон, обещает широкий диапазон применения, так как позволяет при различных плотностях формировать разные формы и размеры. На современном этапе традиционными формами карбона являются:

Каждую из форм доступно изготовить на заказ в любом количестве составных частей, обрезков, кусков.

Углеродистое волокно что это. Смотреть фото Углеродистое волокно что это. Смотреть картинку Углеродистое волокно что это. Картинка про Углеродистое волокно что это. Фото Углеродистое волокно что этоПример отдельно взятого изделия на основе углеродного волокна — зеркало заднего вида автомобиля. Здесь не столько радует дизайн, сколько безвременный срок жизни аксессуара

Уже сейчас среди примеров применения углеродных волокон разных по качеству, можно встретить привычные для массового пользователя вещи:

Карбон высокого качества применяется в сферах, где приоритетом являются новые технологии:

Тем не менее, широкого внедрения карбона пока что не наблюдается. Обусловлены ограничения, прежде всего, высокой себестоимостью процесса получения материала.

Сложности массового производства карбона требуют вливания значительных средств. Этим фактом обусловлен слабый интерес компаний к новому эффективному материалу.

Например, изготовление только лишь одного велосипеда из карбона обходится производителю, как минимум, в сто тысяч рублей. Поэтому для автомобильной промышленности или массового строительства разного рода объектов, внедрение нового материала крайне ограничено.

Углеродистое волокно что это. Смотреть фото Углеродистое волокно что это. Смотреть картинку Углеродистое волокно что это. Картинка про Углеродистое волокно что это. Фото Углеродистое волокно что этоЭтот велосипед был сделан из материала с добавлением углеродного волокна. Точная себестоимость производства экземпляра неизвестна

Актуальный пример: более-менее массовое использование углеродного волокна в конструкциях спортивных экзотических автомобилей. Правда, последние годы наметилась тенденция активного внедрения углеродно-волоконных материалов в мостостроительной сфере.

Пародия на углеродное волокно

На фоне удивительных свойств карбона традиционно активизировались любители выдавать желаемое за действительное. Рынок наполнился предложениями относительно дешёвого углеродного волокна. Внешне продукт действительно похож на карбон, но только внешне.

Фактически, выдаваемые за карбон синтетические материалы являются обычным пластиком, внешне напоминающим углеродное волокно. Такие изделия можно часто встретить среди компонентов компьютерной и другой бытовой техники.

Углеродистое волокно что это. Смотреть фото Углеродистое волокно что это. Смотреть картинку Углеродистое волокно что это. Картинка про Углеродистое волокно что это. Фото Углеродистое волокно что этоНа площадках некоторых интернет магазинов предлагается материал внешне похожий на углеродное волокно. На самом деле это обычное стекловолокно

Карбон легко перепутать с другим материалом – стекловолокном, и этим тоже пользуются недобросовестные продавцы рынка. Но стекловолокно, структурно усиленно нитями кварцевого стекла, а никак не углеродом.

Поэтому материалы из чистого карбона отличаются выраженной прочностью, в то время как материалам на основе стекловолокна присущи выраженные свойства гибкости.

Свойства карбона позволяют производить продукты без конкретных границ долговечности.

И в этом тоже существенное отличие.

Углебетон – производная углеродного волокна

Совсем недавно на строительном рынке случилась самая настоящая сенсация. Немецким инженерам удалось применить карбон в качестве арматурного элемента бетона. Так получили новый строительный материал века – углебетон. Правда, чтобы получить конечный результат, немцам потребовались годы.

Углеродистое волокно что это. Смотреть фото Углеродистое волокно что это. Смотреть картинку Углеродистое волокно что это. Картинка про Углеродистое волокно что это. Фото Углеродистое волокно что этоЛабораторные испытания строительного материала будущего — углебетона. В раствор обычного бетона внедряются нити углеродного волокна

Новый строительный материал логично сравнить с традиционным железобетоном. Только вместо привычной стальной арматуры здесь используется тканое углеродное волокно.

Технологию применения такого вида карбона немцы держат в секрете, озвучивают лишь поверхностную технику строительства:

Таким способом получают заливную конструкцию нужной толщины и других размеров. Применение карбонного полотна в сочетании с жидким бетоном – такая технология открывает небывалые возможности для создания строительных конструкций невообразимых форм. При этом надёжность строений обещает быть на порядок выше традиционных – железобетонных.

Углеродные ламели: продолжение эпопеи карбона

Между тем наряду с карбонным полотном для бетона, на строительном рынке появилась ещё одна новинка – углеродные ламели.

Углеродистое волокно что это. Смотреть фото Углеродистое волокно что это. Смотреть картинку Углеродистое волокно что это. Картинка про Углеродистое волокно что это. Фото Углеродистое волокно что этоПримерно так выглядит процесс усиления строительной конструкции, благодаря использованию ламелей из углеродного волокна

Пластинчатый материал, структурно представляющий углеродно-волоконный продукт. Основное предназначение углеродных ламелей:

Углеродным ламелям присущи свойства выраженной упругости при растяжениях. Этот строительные материал отличают высокие механические характеристики при его малом весе.

Пример удачного использования карбонных ламелей – укрепление мостовых опор. Производство их пока ещё остаётся дорогим, но в перспективе ситуация обещает измениться. Применять ламели из карбона на практике несложно:

Через определённый промежуток времени структура ламели пропитывается эпоксидной смолой, застывает и превращается в монолитную крепкую основу. При желании поверх такой основы можно положить декоративный слой.

Начало массового производства углеродного волокна в России

Видеоролик «Алабуга-Волокно» — наглядный информационный материал об организации современного производства углеродного волокна на территории России. «Алабуга-Волокно» — это одно из многих уникальных российских производств современности:

КРАТКИЙ БРИФИНГ

Источник

Углеволокно. Свойства и применение. Виды заготовок и особенности

Углеволокно (УВ) – специализированный прочный материал, состоящий из тонких нитей толщиной от 5 до 10 мкм, сформированных атомами углерода. Обычно они в дальнейшем собираются для изготовления особой пряжи. Особенность данного материала в химической инертности, малом удельном весе, а также высокой прочностью к растяжению.

Технология изготовления

Углеволокно отличается высокой стоимостью, так как технология его производства достаточно затратная и сложная. В качестве исходного сырья для получения углеволокна применяются органические волокна. Задача производителя – удалить из них все лишнее, кроме атомов углерода.

Чтобы получить углеродное волокно, исходное сырье окисляют на воздухе, долго воздействуя на него при температуре 250°C. Длительность этого процесса может доходить до 1 суток. Температура способствует строению в волокнах особенных лестничных структур атомов.

На следующем производственном этапе выполняется постепенный нагрев до температуры 800°C, а затем ее повышением до 1500°C. Это происходит уже в среде азота или аргона. Данный процесс называется карбонизация. Он заканчивается образованием графитовой структуры.

Финальная стадия производства называется графитизация. Это очень ресурсозатратный сложный процесс, который подразумевает прогрев формируемого волокна до 3000°C. В итоге в нем остается не более 1% примесей, основную же структуру занимают именно атомы углерода.

Полученные волокна в разы тоньше человеческого волоса. В итоге они собираются пучками, после чего из них обычно сплетается подобие ткани. Такой материал в основном применяется для изготовления различных изделий методом соединения слоями с использованием в качестве связующего полимерных смол.

Виды полуфабрикатного сырья из углеволокна

Волокна перерабатываются в различные материалы, используемые как полуфабрикат для получения других изделий. Производители предлагают свое сырье в таком виде:

Вся эта продукция применяется в композитных материалах, где углеволокно служит армирующим слоем. В качестве же связующего, может использовать смола, бетон и т.д. Также существуют варианты применения углеродных волокон в чистом виде, однако в этом случае они ценятся не за прочность, а к примеру адсорбирующие качества.

Свойства углеродного волокна
Материал имеет выдающиеся качества, за счет чего является незаменимым во многих направлениях. К главным техническим параметрам углеродного волокна можно отнести:

Материал способен выносить нагрев вплоть до 1600-2000°С без изменения качеств, при условии нахождения в бескислородной среде. Данное свойство углеволокна дает возможность его использовать как тепловой экран в различных устройствах, эксплуатируемых в условиях повышенных экстремальных температур.

Углеродистое волокно что это. Смотреть фото Углеродистое волокно что это. Смотреть картинку Углеродистое волокно что это. Картинка про Углеродистое волокно что это. Фото Углеродистое волокно что это

Углеволокно способно переносить контакт практически с любыми химическими веществами. Но все же оно не идеальное, так как окисляется в кислородной среде при сильном нагреве. В итоге реально использовать углеродное волокно на воздухе можно только при условии нагрева не более, чем 370°С. Это все же не так плохо. Нужно отметить, что обычно материал находится в композите, где не контактирует с воздухом. Если связующий компонент композита способен держать большую температуру чем 370°С, то и для углеволокна предел будет ограничен только стойкостью внешней оболочки. Пока последняя не разрушится, волокно будет работать без изменения рабочих качеств.

Удельная прочность углеволокна доходит до 2,5-3,5 ГПа при воздействии на разрыв. Это один из самых крепких материалов. При этом он гибкий и очень легкий. Изделия из углеволокна в разы превосходят возможности пластиков, дерева и т.д. Благодаря этому из них делают облегченные сверхмощные рамы для велосипедов, мотоциклов и даже детали обшивки гоночных автомобилей, космических аппаратов, самолетов.

При пропускании через углеволокно электрического тока, оно сильно разогревается. Именно это изначально и являлось основным ценным свойством материала. Его изобретатель Т.Эдисон разработал технологию получения волокон из углерода именно благодаря тому, что тот при пропускании тока греется. Ученый использовал УВ в качестве нити накаливания для своих электрических ламп освещения. В дальнейшем такое применение было прекращено, так как использование вольфрама более практичное. Сейчас токопроводимостью углеволокна пользуются в электронике.

Где используется

Углеродное волокно применяется в самых разнообразных сферах и областях, так как ценится за легкость и прочность.

Углеволокно используется в таких направлениях производства:

В больших объемах УВ расходуется в строительной сфере. В своем большинстве он нужен для реставрации старинных архитектурных сооружений. Одним из примеров такого применения является углебетон. Это композитный материал, представляющий собой по составу обычный бетон, в который слоями вложено углеволокно. Он намного прочнее прочих бетонов, к тому же не боится коррозии, так как не имеет стальной арматуры. Также углеволокном, с применением полимерных смол, укрепляют различные поврежденные поверхности, чтобы вернуть их монолитность перед оштукатуриванием, не создавая слишком толстый слой штукатурки.

УВ применяется также для изготовления систем фильтрации. Оно обладает очень выраженными абсорбирующими качествами. Это позволяет фильтрам на его основе удалять органические и хлорорганические соединения. Считается, что они позволяют убрать из питьевой воды сторонние вкус и запахи. Само УВ при этом является полностью безопасным для человека, так как не выделяет никаких опасных компонентов в жидкость.

Углеродистое волокно что это. Смотреть фото Углеродистое волокно что это. Смотреть картинку Углеродистое волокно что это. Картинка про Углеродистое волокно что это. Фото Углеродистое волокно что это

Что такое карбон

Одним их самых известных материалов, получаемых из углеволокна, является карбон. Он изготавливается из хаотично расположенных волокон, из которых формируются пучки. Последние переплетаются по схожей технологии, что применяется при изготовлении тканей. Количество ниток в пучках исчисляется тысячами. Чем их больше, тем толще карбон. В связи с этим в его названии применяется маркировка, указывающая на количество волокон. Так, если толщина обозначена как 2.5K, то это говорит, что в карбон вплетено 2,5 тыс. волокон. Встречается материал разной толщины: 6K, 12K и даже 24 К.

Углеродистое волокно что это. Смотреть фото Углеродистое волокно что это. Смотреть картинку Углеродистое волокно что это. Картинка про Углеродистое волокно что это. Фото Углеродистое волокно что это

Стоит отметить, что карбон толщиной в 12К настолько прочный, что преимущественно применяется в военной промышленности. Из него делают головки баллистических ракет, и даже лопасти для вертолетов. Углеволокно в карбоне такой толщины способно выносить колоссальные нагрузки, от которых обычный металл просто изогнется. При этом это очень легкий материал.

Что такое углепластик
Многие знают об углепластике, который также содержит в себе УВ. Для его формирования применяются 3 технологии:

При использовании мокрого способа, углеродное волокно укладывается слоями в формы, между ними наносится смола. Чаще всего применяется эпоксидная, или полиэфирная. В итоге сделанное таким образом изделие высушивается до полимеризации связующего, после чего извлекается из формы.

Углеродистое волокно что это. Смотреть фото Углеродистое волокно что это. Смотреть картинку Углеродистое волокно что это. Картинка про Углеродистое волокно что это. Фото Углеродистое волокно что это

Также распространенным методом является прессование. Для этого исходное сырье пропитываться смолой, затем спрессовывается. В итоге во время сжатия полимер затвердевает, и на выходе получается готовое изделие. Оно отличается от получаемых другими методами тем, что имеет ребристую поверхность. Особенность этой технологии в том, что возможно делать в итоге предмет практически любой объемной формы.

Также из углеволокна можно изготавливать трубы методом намотки. Для этого применяется только тканый или нетканый материал в виде холста. Он наматывается на цилиндр нужного диаметра, с нанесением между слоями смолы. В итоге достаточно быстро формируются трубки. Обычно их используют для изготовления легких лыжных палок, удилищ. Аналогичным методом делают и облегченные рамы для спортивных велосипедов.

Недостатки углеволокна и изделий из него
У углеволокна имеются и недостатки. В целом это хороший материал, но композиты на его основе далеко не идеальные. Они имеют ряд слабых сторон:

Сами по себе композитные материалы на основе углеволокна отличаются превосходной стойкостью. При этом они плохо переносят точечные удары. В итоге от такого воздействия на них могут образовываться сколы. Конечно проблема здесь не в самом углеволокне, а смоле. Волокно служит внутренней арматурой, а сама смола выполняет силовую скрепляющую функцию. Так что при ударах скалывается именно она.

Углеродистое волокно что это. Смотреть фото Углеродистое волокно что это. Смотреть картинку Углеродистое волокно что это. Картинка про Углеродистое волокно что это. Фото Углеродистое волокно что это

Сложно изготовить как само углеволокно, так и в дальнейшем изделия из него. Нужно укладывать его слой за слоем, и промазывать связывающим полимером. К примеру, чтобы сформировать лист углепластика толщиной 1 мм, нужно уложить 4 слоя углеволокна. То есть сам процесс достаточно длительный и кропотливый.

Очень часто под видом изделий из углеволокна продают стеклопластик и подобные композиты. Внешне они могут быть похожи, но являются менее прочными. Так что не всегда, если заявлено что изделие содержит УВ, это на самом деле так, и оно отличается повышенной прочностью.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *